Bulging Resistance of Coke Drums using Staggered Seam Design

Mahmod Samman, Ph.D., P.E.
Houston Engineering Solutions, LLC
mms@hes.us.com

RefComm Global 2020
November 2020
Overview

• Shell bulging
• Types of bulges
• Vertical plate design
• Staggered seam design
• Analysis of staggered seam design
• Recent development
Shell Bulging

• Major problem for decades.
• Despite design improvements, still a problem—perhaps more severe today.

Courtesy of CB&I
Bulging Types

• Uniform
 – Seam Bulging
 – Bottom Growth
 – Tapered Growth
 – Outage Growth
 – Mid-height Growth
 – Band Bulging
 – Helical Bulging
 – Accordion Bulging

• Local

Weil and Rapasky (1958)
The constrained balloon
Unconventional Shell Designs

• Vertical plate
• Staggered seam
Vertical Plate

- Publication: Feb 27, 2001
- US 6193848 B1
- CBI
Staggered Seam

- US 9884996
- International patents
Analysis of Staggered Seam Design

Cause of non-uniform growth:
• Weld-base strength ratio (10% and 50% used)
• Weld reinforcement (10% used)

Bulging simulation:
• Pressure (used in this analysis)
• Coke resistance (future)
Scope

- Conventional
- 3-leaf
- 4-leaf
Conventional Design
Radial Displacement

U, U1 ("ASSEMBLY__T-Datum csys-2")
+1.548e+00
+1.521e+00
+1.493e+00
+1.466e+00
+1.439e+00
+1.412e+00
+1.364e+00
+1.357e+00
+1.330e+00
+1.302e+00
+1.275e+00
+1.248e+00
+1.221e+00
3-Leaf Staggered Seam Design
Radial Displacement
4-Leaf Staggered Seam Design
Radial Displacement
Results

Bulge simulation using pressure
Weld reinforcement 10%

Relative Bulging (%) vs Weld-Base Strength Ratio (%)
Conclusions

- Analysis confirmed that staggered seam design reduces bulging compared to conventional shell design.
- Using pressure loading, up to 27% bulging reduction is predicted.
- The four-leaf design results in a more significant bulging reduction than the three-leaf design.

<table>
<thead>
<tr>
<th>design type</th>
<th>weld 10%</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>Diff (%)</td>
<td>reduc (%)</td>
<td>min</td>
<td>max</td>
<td>Diff (%)</td>
<td>reduc (%)</td>
</tr>
<tr>
<td>conventional</td>
<td>1.221</td>
<td>1.556</td>
<td>27.44</td>
<td>0.00</td>
<td>0.8486</td>
<td>1.586</td>
<td>86.90</td>
<td>0.00</td>
</tr>
<tr>
<td>3-leaf</td>
<td>1.211</td>
<td>1.509</td>
<td>24.61</td>
<td>10.31</td>
<td>0.8403</td>
<td>1.501</td>
<td>78.63</td>
<td>9.52</td>
</tr>
<tr>
<td>4-leaf</td>
<td>1.229</td>
<td>1.487</td>
<td>20.99</td>
<td>23.49</td>
<td>0.8717</td>
<td>1.426</td>
<td>63.59</td>
<td>26.82</td>
</tr>
</tbody>
</table>
Recent Development

Licensed to Sumitomo Heavy Industries, Japan

Oct. 2020
Recap

- Shell bulging
- Types of bulges
- Vertical plate design
- Staggered seam design
- Analysis of staggered seam design
- Recent development: HES-Sumitomo agreement