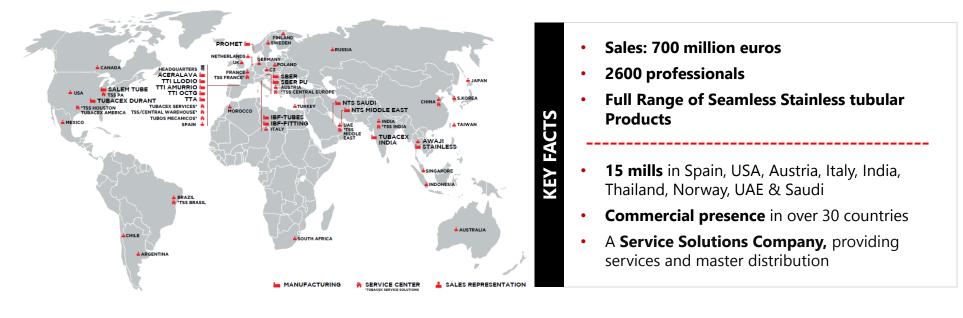


ANTI-COKING SOLUTION FOR FIRED HEATERS IN DELAYED COKER, VISBREAKER & VACUUM DISTILLATION UNITS

> RefComm 2020 September 16, 2020


> > Sanjay Lodha Global Business Director

- Tubacex Group
- Tubacoat concept
- Product characterization
- Coke deposition in fired heater tubes
- Chemical Inertness and Coking Resistance Study
- Field applications/Case Studies- Fired Heaters and others
- Anti Corrosion Commercial Application
- Conclusion

A worldwide leading supplier of Seamless Stainless and High Nickel Alloy Tubes

Introduction

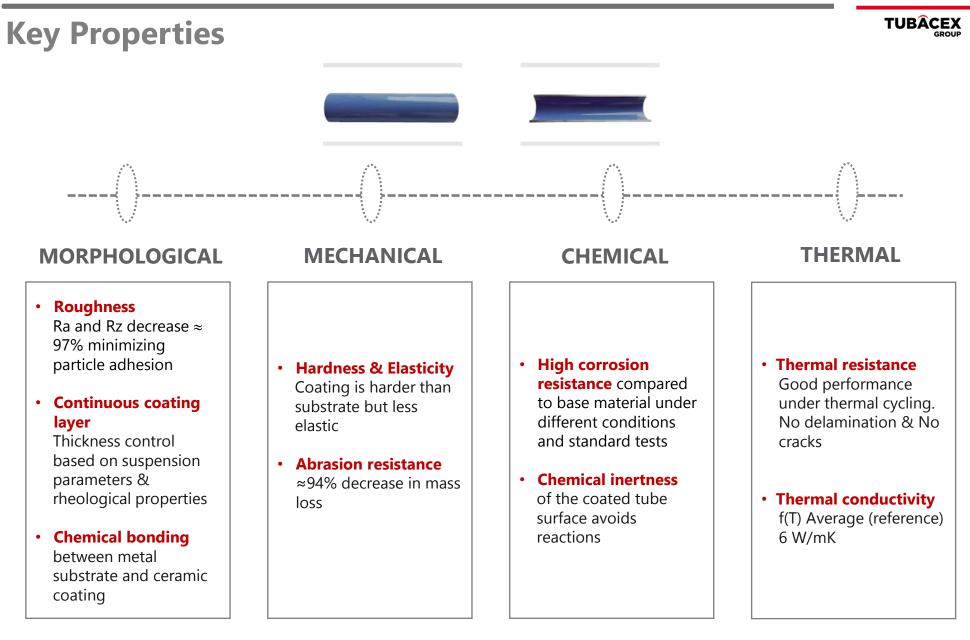
- ✓ Technology-based company
- ✓ 100% subsidiary of TUBACEX
- Engineering, industrial development and commercialization of tubular solutions based on advanced innovative coatings

Value-added products with...

- Outstanding corrosion resistance in different media and thermal conditions
- High abrasion resistance (64HRC hardness)
- Anti-adherent and anti-fouling properties
- Chemical inertness

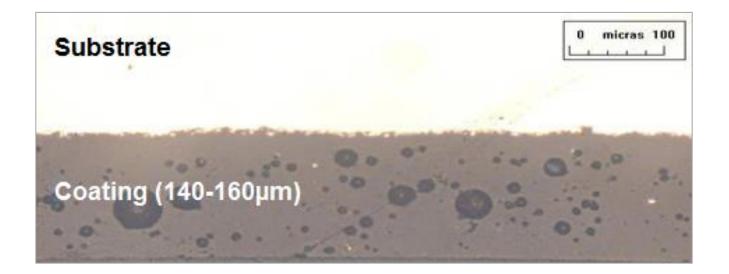
Specifically developed to...

 Provide long term reliable & competitive solutions to industrial applications under severe working conditions and extreme environments


Tubacoat concept

TUBACOAT

Potential applications



- Furnaces
- Heat exchangers
- Condensers
- Boilers
- Reactors

Continuous **coating layer Thickness control** based on suspension parameters & rheological properties

Typical coating thickness range: **100-150 μm**

Anti-adherence

Roughness. Ra and Rz decrease ≈ 97% minimizing particle adhesion

Substrate

Ra \approx 1,5 μm and Rz \approx 7,8 μm

Ceramic coating

Ra < 0,04 μm and Rz \approx 0,2 μm

TUBACEX GROUP

TUBACOAT

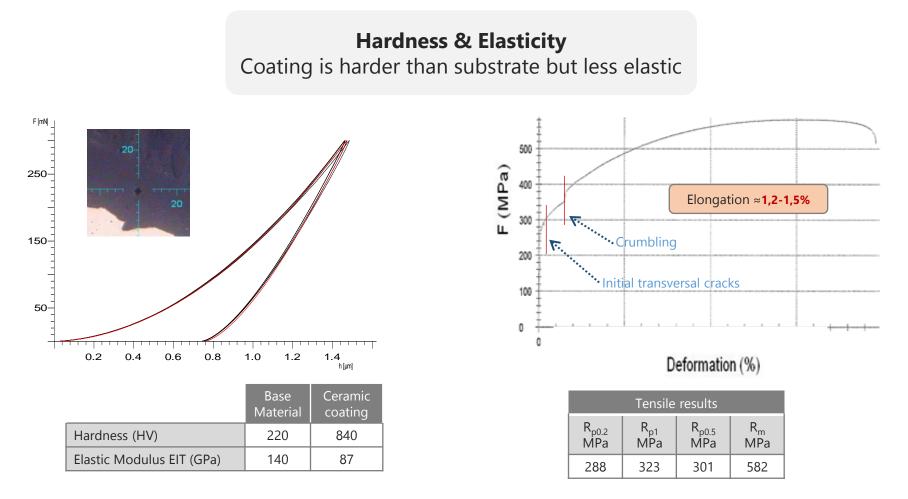
Mechanical

Abrasion resistance ≈ 94% decrease in mass loss

.

0 cycles

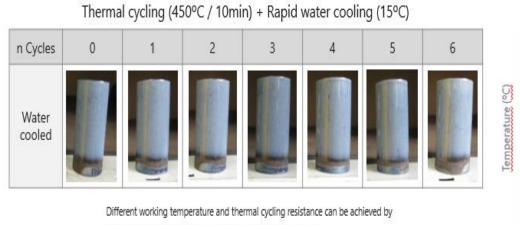
10.000 cycles


Mass loss for 10.000 cycles

 $\varDelta w_n = < w_0 > - < w_n >$

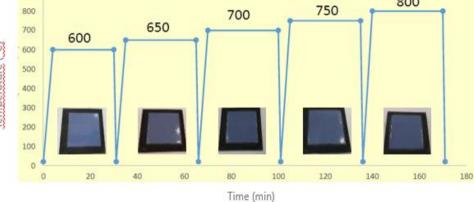
- Substrate $\Delta w_{10000} = 94.783 - 94.725$ $\Delta w_{10000} = 58 mg$
- Ceramic coating (T153) $\Delta w_{10000} = 119.377 - 119.373$
 - ⊿w₁₀₀₀₀ = **4 mg**

Mechanical


Hardness and elasticity properties can be improved by modifying structure and composition of

ceramic compounds and process conditions

Thermal Resistance


Good performance under thermal cycling No delamination – No crack

900

modifying structure and composition of ceramic compounds

DAMAGE 800 750 700

Thermal cycling (30min) + Rapid water cooling (20°C)

NO

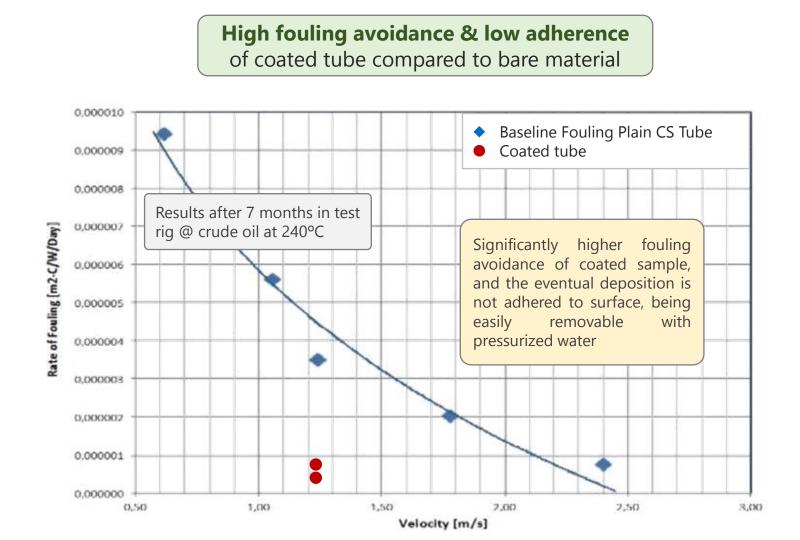
TUBACOAT

Characteristics

Tubacoat glass-finished layer will protect the inner or outer surface of the tubes.

Deposition rate (Φ_d) Flow Stream Fouling layer Heat Transfer Surface Heat Transfer Surface

Deposition Rate will decrease due to its chemical inertness and smoothness of surface

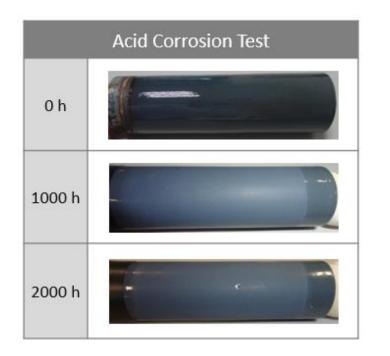

Removal Rate will increase due to its anti-adherence properties

Heat Transfer loss will reduce due to lower fouling layer

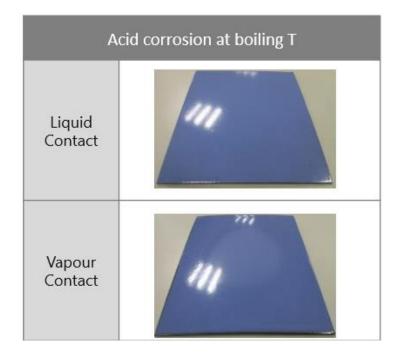
Fluid Flow will maintain/increase the stream

TUBÂCEX

Chemical



High corrosion resistance compared to base material


Acid corrosion test

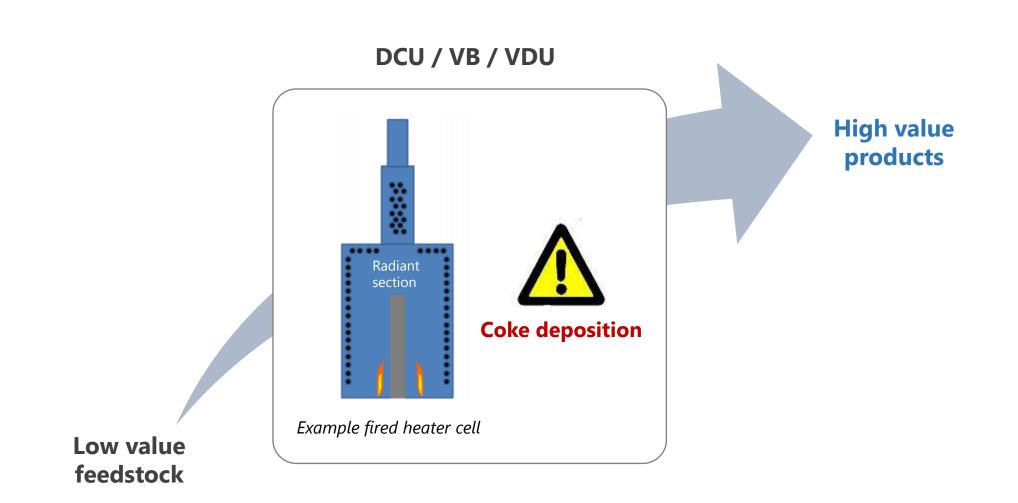
- Conditions:
 - Solution: 10% HCl at 22°C
 - Visual inspection

Acid corrosion at boiling temperature

- Conditions:
 - Solution: boiling H2SO4 (30%)
 - 18 h (UNE-EN ISO 28706-2)

Unique Ceramic Coating Technology

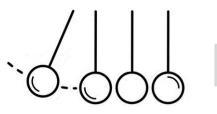
TUBACOAT	Property	In-situ coatings
↑ Low roughness	Fouling/Coking resistance	↓ High roughness
↑ Chemical bonding	Corrosion resistance	Lack of bonding
↑ high hardness	Abrasion resistance	low hardness
↑ Chemical bonding	High temperature resistance	Lack of bonding
In factory & local weld coating	On-site application	1 Direct application


The coating is vitrified above **800°C/1470°F** which provides **chemical bonding** and "glass" properties, enhancing adherence between coating and substrate and **increasing resistance to fouling, corrosion and abrasion at high temperature** compared to in-situ coatings

- Tubacex Group
- Tubacoat concept
- Product characterization
- Coke deposition in fired heater tubes
- Chemical Inertness and Coking Resistance Study
- Field applications/Case Studies- Fired Heaters and others
- Anti Corrosion Commercial Application
- Conclusion

Delayed coker, Visbreaker & VDU fired heaters

TUBACOAT


Coke deposition problems

As coke layer grows....

- \downarrow Heat transfer & \uparrow Tube skin temp
- ↓ Effective area & ↑ Pressure drop

Efficiency loss

NEED FOR FREQUENT DECOKING

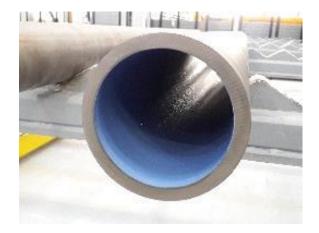
Production loss

Higher OPEX

TUBACOAT

- Tubacex Group
- Tubacoat concept
- Product characterization
- Coke deposition in fired heater tubes
- Chemical Inertness and Coking Resistance Study
- Field applications/Case Studies- Fired Heaters and others
- Anti Corrosion Commercial Application
- Conclusion

Anti-coking Solution For Fired Heaters



surface of heater tubes:

• Minimizes coke deposition (anti-fouling)

When the coating is applied to the inner

Fired heater with coating applied will obtain:

- Longer run lengths
- Lower fuel consumption
- Increased safety and reliability

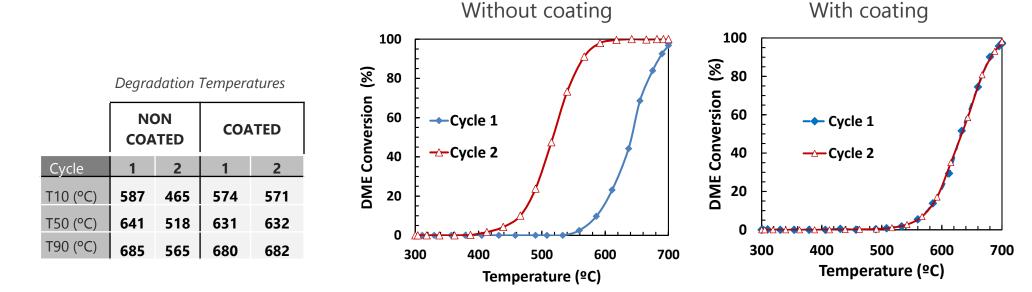
TUBACOAT

Coking Resistance Study

- DME cracks towards the equimolecular CO, H₂ and CH₄ (Eq. (1)depends on T)
- Parallel reactions of the gaseous products occur (Eqs. 2-4) depending on T and on the characteristics of the contact surface (active sites on the surface)

DME cracking:
$$CH_3OCH_3 \xrightarrow{\Delta} CH_4 + CO + H_2$$
 (1) Thermal route
Boudouard reaction: $2CO \Leftrightarrow CO_2 + C\downarrow$ (2)
Methane decomposition: $CH_4 \Leftrightarrow H_2 + C\downarrow$ (3)
Reverse-Water Gas Shift: $CO_2 + H_2 \Leftrightarrow CO + H_2O$ (4)

TUBACEX


Universidad Euskal Herriko del País Vasco Unibertsitatea

Chemical Inertness and Coking Resistance Study

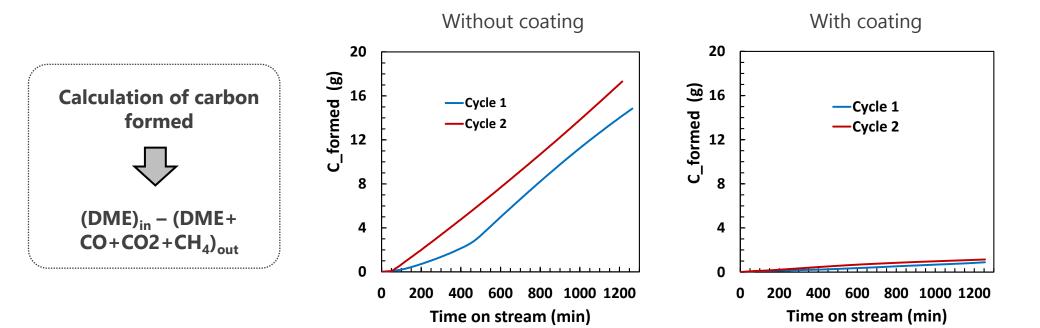
Chemical inertia and reproducibility

- Temperature = 300-700°C/572-1290°F
- Residence time = 60s
- Time on stream: 80 min

COATED TUBES ARE CHEMICALLY INERT PREVENTING COKE FORMING REACTIONS

TUBÂCEX

Study of carbon formation

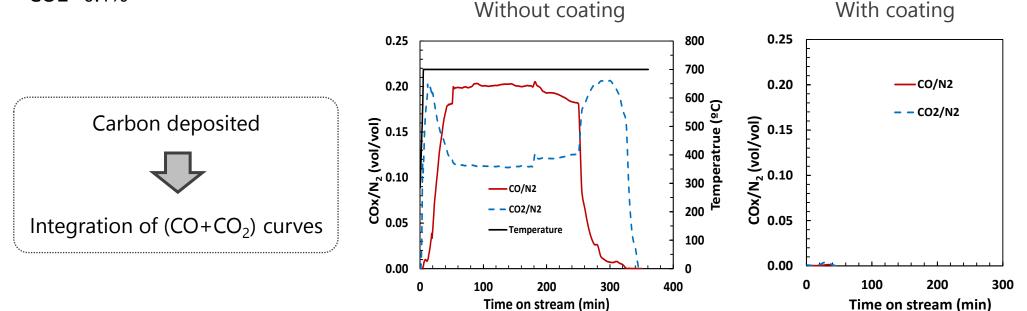

TUBACOAT

Euskal Herriko

Unibertsitatea

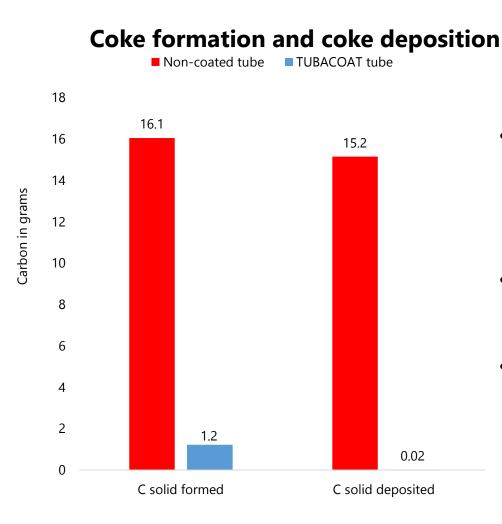
Universidad

del País Vasco



Study of carbon deposition

Combustion conditions:


- Temperature= 300-700°C/572-1290°F
- Residence time = 6 s
- Time on stream(700°C/1290°F): CO2<0.1%

TUBÂCEX

Conclusions

- Chemical inertness of coated tube surface avoids coking reactions occurring in the active sites of noncoated tubes
- **Carbon formed** is **10 times lower** in coated tube vs non-coated tube
- **Carbon deposited** is **100 times lower** in coated tube vs non-coated tube

- Tubacex Group
- Tubacoat concept
- Product characterization
- Coke deposition in fired heater tubes
- Chemical Inertness and Coking Resistance Study
- Field applications/Case Studies- Fired Heaters and others
- Anti Corrosion Commercial Application
- Conclusion

Visbreaker Unit

٠

٠

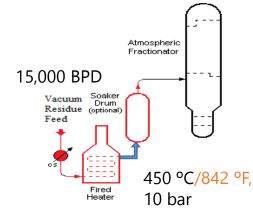
٠

ID coated tubes, bends and flanc

ID coated tubes, bends and flanges installed at the furnace outlet line to prove anti-fouling properties.

Dimensions: OD 4", Sch. 80 - 317L SS

PROBLEM DESCRIPTION


Fired heaters frequent shutdown for pigging

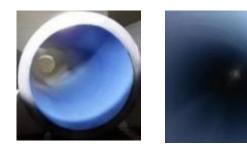
Preheat exchangers constantly taken out of

Coke deposition inside the tubes causing:

 \rightarrow Huge loss of production cost

service due to coke accumulation

TUBACOAT


Visbreaker Unit

Coke deposition inside the tubes causing:

Very thin coke layer - not detected by Radiographic ٠

TRIAL RESULTS (after 9 months)

- test 75% reduction in coke deposition.
- **Coke was much easier to remove** 3 times lower • water pressure than before was enough to remove all the coke.
- **Decoking services** may use softer pigs and cleaning ٠ will be less frequent

[Ö]

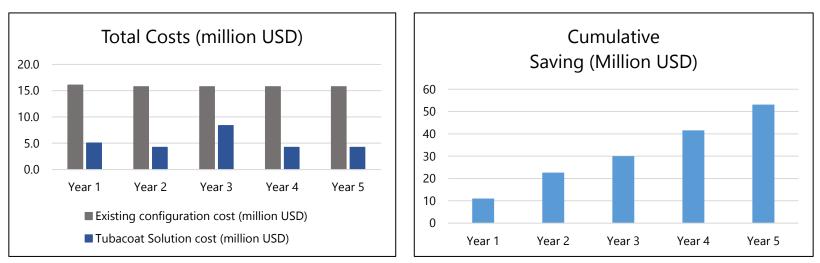
- Run lengths without **decoking**/online spalling can be increased between 3 and 4 times
- Savings by Customer 1.5 Million USD per year
 - 1.1 M\$ higher throughput (reduced shutdown time 7days/yr)
 - 0.15 M\$ furnace online spalling/pigging,
 - 0.15 M\$ fuel consumption,
 - 0.10 M\$ Heat Exchanger cleaning

TUBÂCEX

Delayed Coker Furnace

- Refinery operates 1 Delayed Coker, with normal capacity 124,000 barrel/day.
- Delayed Coker has 3 furnaces. Each furnace 6 passes. Each pass 30 radiant tubes
- Heater tube material: P9

Decoking Problem



- Frequent decoking is required due to coke layer build up leading to:
 - High pressure drop
 - Increase in tube metal skin temperature
- Each furnace requires pigging every 3 months and online spalling every 30-45 days in 2 passes/furnace
- During pigging, one full furnace is out of service for 3-4 days → unit running at 70% capacity. During Online Spalling, reduced capacity to 93% for one day/pass.

Every time one furnace is taken out of service for pigging, the cost due to reduced throughput is approximately 3.6 MM USD/furnace

Every time online spalling is performed in 2 passes of 1 furnace, the cost due to reduced throughput is approximately 125 KUSD/furnace

Tubacoat solution

Cost: Tube cost (year 1) + cost due to reduced throughput during decoking + cost due to higher fuel consumption

By extending Run Length without decoking by 3 times, estimated incremental benefit of 10 million USD/year.

TUBACOAT

Anti-coking solution – Coating during spalling/pigging

Online spalling:

> Coating designed to withstand online spalling (high temperature and thermal shock).

Mechanical pigging :

➢ Pigs of 64 Rockwell C (RHC) can be used without damage to coating.

Delayed Coker Furnace

TUBÂCEX

PROBLEM DESCRIPTION

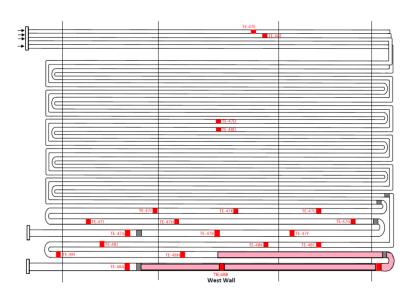
- Heater tube material: 9 Cr 1 Mo
- Currently, their heaters requires online spalling every 50 days when wall temperature is 630°C/1166°F
 → 7 spalls per year
- During spalling operation, 1 of 6 passes needs to be out of service, so overall throughput to the unit is reduced to 85%.
- Spalling time takes approximately 1 day per pass
 - \rightarrow 6 days per spall

CONCLUSIONS

- Due to coke deposition, every year throughput is reduced to 85% for 42 days.
- Estimated potential savings by End user around 3 million USD per year based on large size of their DCU.

Delayed Coker Furnace

Example of Delayed coker furnace


Conclusion

- Problem description
 - Heater tube material: 347H
 - Heater requires online spalling every 2-3 months and also mechanical pigging once per year→ 4 spalls per year and 1 mechanical pigging
 - During spalling, one pass needs to be out of service, so overall throughput to the unit is reduced to 75%.
 Spalling time takes approximately 1 day per pass → 4 days per spall.
 - Pigging requires full unit shutdown for 6 days

- → Due to coke deposition, every year the unit is shutdown for 6 days and throughput is reduced to 75% for 16 days
- \rightarrow Estimated potential savings by End user around <u>2.5 million USD per year</u>

TUBÂCEX

Vacuum Distillation Furnace

Problem Description

Furnace outlet line with severe coke fouling causing:

- Outlet line replacement (8",10" and 12" OD Tubes) every year
- Frequent decoking operations by mechanical pigging
- Traces of Polythionic acid stress corrosion cracking

Tubacoat Solution

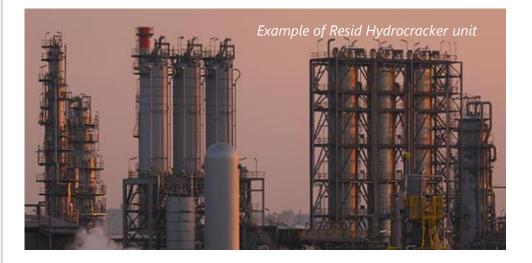
Tubacoat inner coated tubes, bends and reducers installed at the furnace outlet line

Base material: 317L SS @ Dimensions: OD 8" and 10" OD Lines

ROI expected in 1.5 Years

TUBÂCEX

Hydrocracker (RHC)


PROBLEM DESCRIPTION

- Each of their 8 Resid Hydrocracker reactors has more than 800 risers that are crucial for proper feed distribution in the reactor
- Reactors operate at more than 400°C/752°F and more than 130 bar.
- Severe fouling occurs at the bottom section of all Resid Hydrocracker Risers
- This leads to maldistribution of process stream and reduced conversion rate

CONCLUSIONS

- With coating, fouling will be minimized leading to improved conversion of resid feed to clean fuels.
- High economic benefits under evaluation.

Field references

TUBACOAT

Vacuum Vistillation Unit (Europe)

Tubes installed in VDU furnace

Tubacoat Solution

Tubacoat inner coated tubes

Base material: 317 SS @ Dimensions: OD 5", Sch. 40

Trial in progress

Inner surface view

- Tubacex Group
- Tubacoat concept
- Product characterization
- Coke deposition in fired heater tubes
- Chemical Inertness and Coking Resistance Study
- Field applications/Case Studies- Fired Heaters and others
- Anti Corrosion Commercial Application
- Conclusion

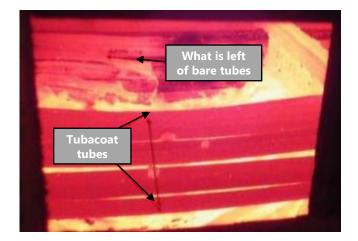
Anti-Corrosion solution – Case Study – North America Refinery

Coke Calciner

• Working Conditions

- Oil fumes rich in vanadates at 850°C
- Metal surface 570°C
- Low pressure (welded tube)

Substrate Material TP310 (bare)



Chemical corrosion

Efficiency loss

Coke calciner

(Image @ 10 months working)

TUBACOAT SOLUTION

- 9 TP310 (OD63.5;WT2.41) outer coated prototypes were placed in the upper row (the hottest) of the calciner recuperator in May 2015
- Only the 9 coated tubes were remaining in the area, even suffering overheating during last weeks of operation prior to planned plant shutdown
- The rest of tubes were broken and blinded

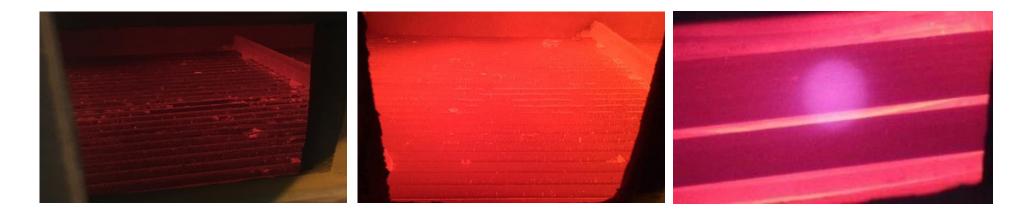
Anti-Corrosion solution – Case Study – North America Refinery

Coke calciner

TUBACOAT SOLUTION

≈ 800 tubes (TP310 grade, OD63.5/WT2.41, outer coating), delivered to customer in Jan'2017 and installed in coke calciner in April 2017.

Status: facility in full operation (& continuous performance monitoring)


TUBACOAT

Coke calciner

Operator received 3 times cycle length, savings of US \$2 million/yr.

Real pictures of coated tubes in coke calciner recuperator after 15 **months** running in full operation

- Tubacex Group
- Tubacoat concept
- Product characterization
- Coke deposition in fired heater tubes
- Chemical Inertness and Coking Resistance Study
- Field applications/Case Studies- Fired Heaters and others
- Anti Corrosion Commercial Application
- Conclusion

Applying inner coating in DCU/ VU/VDU/RHC tubes is:

✓ PROFITABLE

Longer run lengths improving overall throughput
Easier and much less frequent cleaning operations

✓ **SAFE**

 Increased safety by reducing the number of shutdowns and start-up operations and avoidance of hotspots

✓ CLEAN

 Reduced fuel consumption due to increased heat transfer efficiency and CO2 reduction

✓ RELIABLE

- Ad-hoc Formula designed for specific applications
- Ceramic Coating applied to Carbon Steel, Stainless
 - **Steel and Nickel Alloy Materials**

THANK YOU!

Sanjay Lodha SLodha@tubacex.com +91996021500

TUBACOAT PLANT IN CANTABRIA, SPAIN

WWW.TUBACEX.COM