Online Monitoring and Life Extension of Coke Drums

Vipul Gupta
Manager-Inspection,
Technical Services
vipulgupta@mrpl.co.in

Vishal F. Yadav
Sr. Manager-Inspection,
Technical Services
vishalfy@mrpl.co.in

Sohan S. Alva GM-Inspection, Technical Services sohan@mrpl.co.in

Content

- Introduction
- Details of Coke drums
- Coking/De-coking cycles
- Failure modes in coke drums & peripherals
- Inspection and monitoring used in MRPL
- Drum Laser data & severity categorisation
- Strain based engineering analysis observations
- Non-destructive testing (NDT) observations
- Repair methodology and job execution details
- Summary and Conclusion

Introduction

Description	Details
Commissioned in	April 2014
Unit Licenser	M/s Lummus Technology
Capacity	3.0 MMTPA
On-Stream Factor	8000 Hrs/yr (333.33 days)
Turn Down ratio	50%
Design feed TAN	< 0.5
No. of Coke drums	4 nos.
No. of Heaters	2 nos.

Details of coke drums

Description	Details
Manufacturer	M/s ISGEC Yamunanagar
Total length	41457 mm
Internal Diameter	9144 mm / 180 inches
Design coke level	30774 mm
Metallurgy	SA387 Gr 11 CL1 Base + SA240 410S Clad
Cylindrical Shell	10 nos. shell courses
Thickness of cylindrical shell	26 mm to 41 mm with min. 3 mm Clad
Feed entry nozzle	Side feed

Coking and De-coking cycles

Failure modes in coke drums & peripherals

Location of failures	Morphology	Causes
Shell & weld joints	 Bulging and cracking Bowing/tilting (banana effect) Weld cracking at tri-metal joints 	 Cyclic thermo-mechanical loading Uneven heating/cooling Different thermal coefficient of expansion.
Skirt and concrete foundation failures	 Key hole or weld joint Cracks Bulging / Buckling Damage to bolts / structural concrete 	 Cyclic thermo-mechanical fatigue Uneven load distribution Drum movement /Corrosion/Vibration
Piping failures	 Cracking 	 Vibration induced mechanical

fatigue

Inspection and monitoring used in MRPL			
Occasions/Purpose	Results		
			11–14 November 2019

Laser Mapping and	 Initial inspection
Remote Visual	 August 2017

inspection

Internal inspection &

DPT/MPT

- August 2017
- August 2018

- No fabrication damage Localized bulging-2017
 - Band bulging-2018
- Strain based Strain analysis with **Engineering analysis**
 - August 2017 & 2018 Laser data

April-May 2019

Identified areas with high propensity of cracking

Confirmed bulge induced

and weld cracking

- PAUT/TOFD For identifying bulge induced and weld cracking at higher PSI locations.
- Data matched with PAUT/TOFD findings

Drum Laser data & severity categorisation

	Drum C	Drum D
Laser data	Radial growth in mm	Radial growth in mm
2017/2018	33 to 60 mm	24 to 78 mm

Range for ratio of [(R-Rn)/Rn]x 100	Categorization of severity	MRPL drum severity categorisation
0%-1%	Slight	0-45 mm
1%-1.5%	Moderate	45-68 mm
1.5% >=	Severe	69 and above

R- Actual radius measured by Laser mapping Rn- Nominal radius of drum

Laser Mapping data of Drum C

Contour plot of the radius (inches) looking from the inside of the drum

Inward Outward Drum nominal radius is about 180 inches (4572 mm)

Laser Mapping data of Drum D

Drum D-2018: Contour plot of radius (inches) looking from inside of drum

Inward Outward

Drum nominal radius is about 180 inches (4572 mm)

PSI data nomenclature & Drum C, D data

	Drum C		Drum C		Dr	um D
PSI data (%)	Max (+)ve	Max (-)ve	Max (+)ve	Max (-)ve		
2017 data	(+)45.9	(-)22.2	(+)47.8	(-)29.7		
2018 data	(+)51.7	(-)21.3	(+)47.1	(-)25.9		

PSI	Severity	Likelihood of Bulging-	Recommended Frequency of
magnitude	Grade	Related Cracks	Laser Scanning
80% to 100%	Failure	Likely	6 months to 1 year
60% to 80%	Danger	Probable	1 year
40% to 60%	Concern	Possible	1 to 2 years
0 to 40%	Design	Unlikely	2 to 3 years

Plastic Strain Index (PSI) values	Failure initiation location
Positive (+ve)	Inner surface of drums
Negative (-ve)	Outer surface of drums

PSI plots of Drum C & D

looking from the inside of the drum

Drum D-2018: Contour plot of the Plastic Strain Index (%) looking from the inside of the drum

PSI analysis: Conclusion & Recommendation

- Faster deterioration in SA-387 Gr 11 Class 1 drums is attributed to lower strength than Class 2 material typically used in industry.
- Inspection of identified bulging zones from inside and outside surface using Visual, DPT, UT.
- If cracks observed, design and implement high-quality weld overlay repairs at first shutdown.
- Annual laser scanning and strain analysis for bulge assessment

NDT observations

- Inspection performed during de-coking cycles from outside surface
- PAUT using angle shear beam (for locating ID cracks) and zero deg longitudinal beam (for locating clad disbonding) performed.
- PAUT and TOFD performed for circumferential weld seam examination.
- Weld cracking observed at the interface of tri-metal joint.
- Multiple crack like indications observed in shell plate bulge area scanning, in line with PSI analysis data.
- Circ. length of defect 6-760 mm & depth 1.3-8 mm (from drum ID).
- Three category of defects:
 1) up to 50% of clad 2) > 50% and within clad
 3) Depth more than clad thickness and penetrating into base metal

Methodology for AWO repair

- Initial inspection, repair area defect confirmation and marking
- Recording of initial data
 - 1) Grid thickness-for overlay thickness check
 - 2) Dimensional check-for distortion check
 - 3) Hardness check
 - 4) MPI of outside surface for ruling out OD defects.
- Clad removal by arc gouging without pre-heating & finish grinding
- CuSO4 check, PMI and DPT of the finished surface.
- Grit blasting prior to welding to meet SA-3 & primer application
- Fixing of Pre-heating/Post heating pads on drum outer surface, AWO track fixing and machine sequencing.
- Preheating, sealing of clad interface and 1st layer AWO welding

Methodology for AWO repair

- Visual inspection of finished 1st layer, switching off preheating and data collection
- Visual inspection of finished 2nd layer (final layer), including taper at the interface.
- DPT of the interface and post heating.
- Visual inspection and DPT after post heating.
- Removal of AWO tracks and DPT of tack welds after grinding on inner and outer surface (for thermocouple locations)
- PAUT from outer surface of bulge area and PAUT and TOFD for weld seam area.
- Visual inspection and DPT of the insulation support cleats and outer surface of the drums.

Details of job execution

Details of job execution

Drum C overlay extent

Drum D overlay extent

Summary and Conclusion

- Due to cyclic service of the drums, regular monitoring is essential
- Laser mapping is the starting point, followed by engineering analysis based on bulge severity
- Results of engineering analysis to be confirmed by further NDT to decide on need for repair action
- Full circumferential band repair using AWO is recommended over patch repair of bulges
- Multiple elevation repairs requires planned sequencing of jobs
- Inspection of outer surface of drums is highly recommended post AWO

Thank You

vipulgupta@mrpl.co.in vishalfy@mrpl.co.in sohan@mrpl.co.in