TUBACOAT – An Efficient and Cost Effective Advanced Coating Solution for Tubular Products in Extreme Refinery and Petrochemical Applications

Shabareesh Nair

snair@tubacex.com

Sanjay Lodha

slodha@tubacex.com

- Introduction
- Tubacoat concept
- **Product characterization**
- Chemical Inertness and Coking Resistance Study
- Field applications
- Conclusions

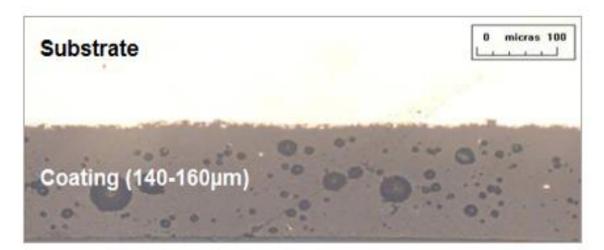
Introduction

- Reduction of overall maintenance costs in critical equipments has been the need of the hour at many refineries and petrochemical plants.
- Use of advanced stainless steel and CRA's is the next logical solution to increase the service life of critical components and minimizing operation and maintenance costs.
- The selection is always driven by Cost optimization Vs Corrosion resistance.
- Ceramic coated tube concept offers a cost efficient and environmental friendly solution to protect valuable assets from corrosion, abrasion and other forms of structural degradation.
- The solution has been well accepted for various extreme conditions and with in-house developed industrial process the thin tailor made ceramic coating when used tubular applications for steel tubes have resulted in outstanding corrosion resistance in different media and thermal conditions.

Tubacoat Concept

Solutions

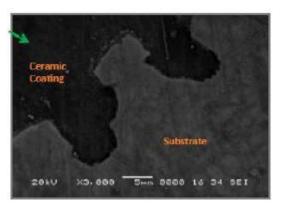
Value-added products with...

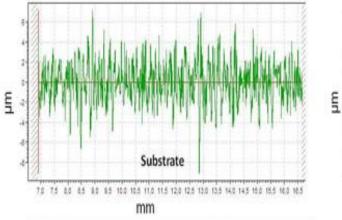

Specifically developed to...

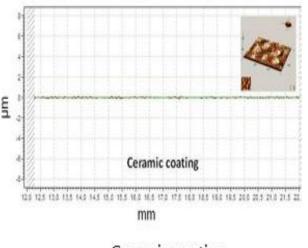
- Outstanding corrosion resistance in different media and thermal conditions
- ✓ High abrasion resistance (64HRC hardness)
- ✓ Anti-adherent and anti-fouling properties
- ✓ Chemical inertness
- Provide long term reliable & competitive solutions to industrial applications under severe working conditions and extreme environments

Morphological

Continuous coating layer Thickness control based on suspension parameters & rheological properties


Typical coating thickness range: 100-150 μm


After coating process, coating thickness is measured in every tube with **ultrasonic thickness gauge**

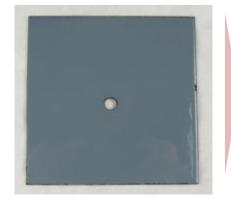


Roughness. Ra and Rz decrease ≈ 97% minimizing particle adhesion

Substrate Ra ≈ 1,5 µm and Rz ≈ 7,8 µm

Ceramic coating Ra < 0,04 µm and <u>Rz</u>≈ 0,2 µm

Mechanical

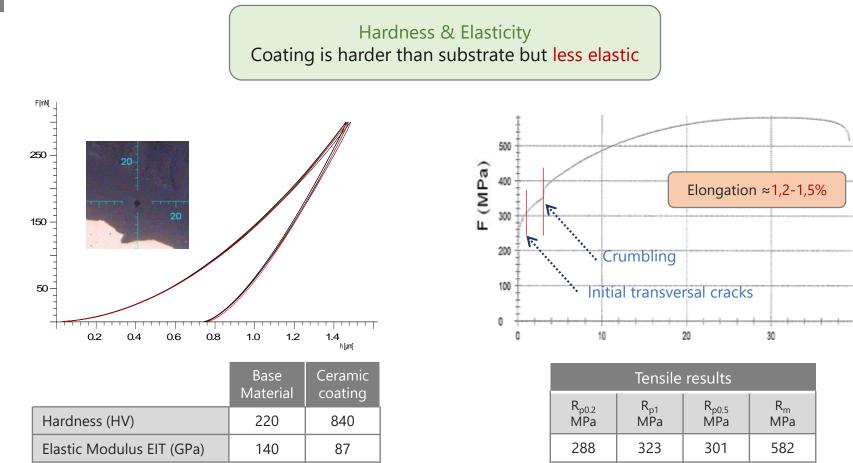

Abrasion resistance ≈ 94% decrease in mass loss

0 cycles

10.000 cycles

Mass loss for 10.000 cycles

$$\Delta W_n = \langle W_0 \rangle - \langle W_n \rangle$$


Substrate

 $\Delta w_{10000} = 94.783 - 94.725$ $\Delta w_{10000} = 58 mg$

Ceramic coating (T153)

 $\Delta w_{10000} = 119.377 - 119.373$ $\Delta w_{10000} = 4 mg$

Mechanical

Hardness and elasticity properties can be improved by modifying structure and

composition of ceramic compounds and process conditions


Thermal Resistance

Good performance under thermal cycling No delamination – No cracks

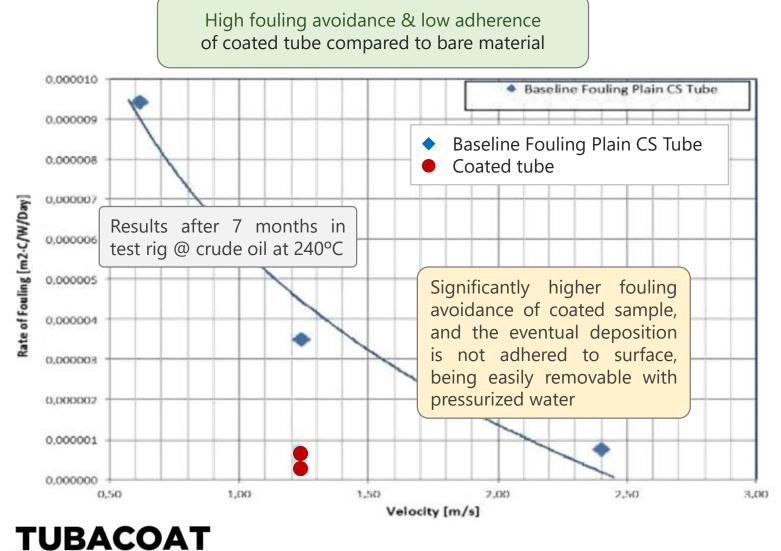
Thermal cycling (450°C / 10min) + Rapid water cooling (15°C)

Thermal cycling (30min) + Rapid water cooling (20°C) NO

Emissivity

Emissivity values >0.80 Reference \approx 0,83 (@ 550°C)

Coating	VP15	VP15 + 25% SiO2	VP15 + 25% SiO2 + 25% PIG (Cr-Cu-Fe)
Substrate	Inox 310	Inox 310	Inox 310
ROUGHNESS(Ra)	0,03	0,08	0,11
THICKNESS (µm)	132	108	112
	662.1.6	B62.24	862:3-6
AVG EMISIVITY AT 20°C	0,892	0,889	0,889
AVG EMISIVITY AT 550°C	0,834	0,838	0,832


MEASURING CONDITIONS

Measurement method	SNEHT	Measurement method	SNHRRT/V1-MIR
Temperature (T)	550°C	Temperature (T)	25°C
Polar angle (0)	0°	Polar angle (θ)	12°
Spectral range	1.8 to 26 µm	Azimuth angle (φ)	0°, 45°, 90°, 135°
opeenariange	1.0 to 20 µm	Spectral range	2 to 20 µm

Rate of fouling

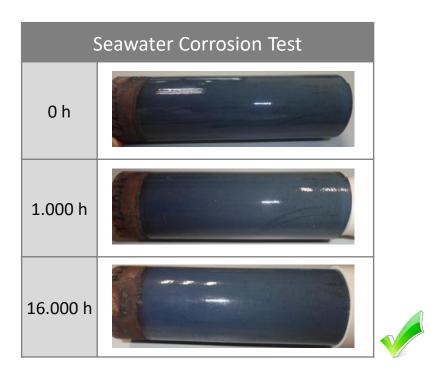
TUBÂCEX

GROUP

Chemical

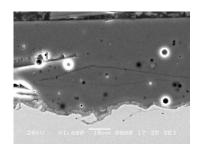
High corrosion resistance compared to base material

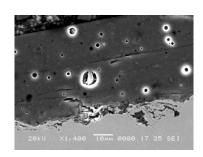
Seawater corrosion test


• Conditions:

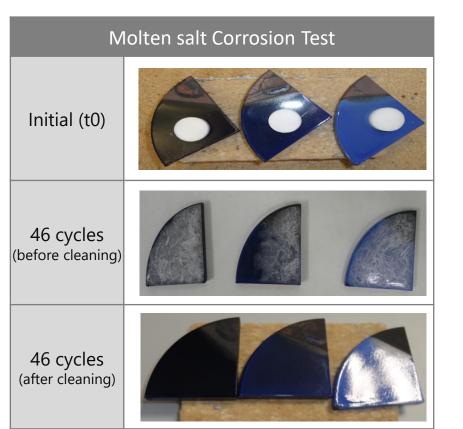
- Solution: 3,5% NaCl at 22°C
- Visual inspection

High corrosion resistance for offshore applications


Chemical


High corrosion resistance compared to base material

Molten salt corrosion test


 \circ Conditions:

- Molten salt composition: NaNO3 + KNO3 (60/40)
- Blocks of molten salts positioned over ceramic coating
- 46 cycles HEATING (8 h at 400°C)/cooling (air)
- Visual and optical microscopy inspection

Chemical

High corrosion resistance compared to base material

0 h

1000 h

2000 h

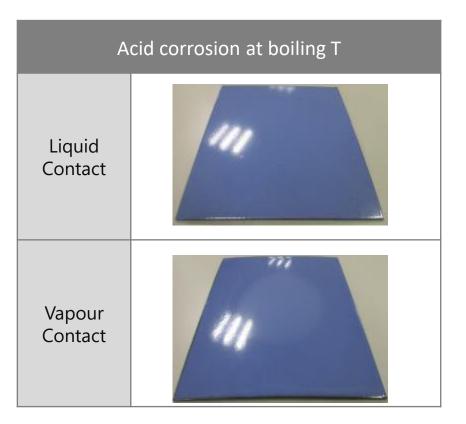
Acid Corrosion Test

Acid corrosion test

• Conditions:

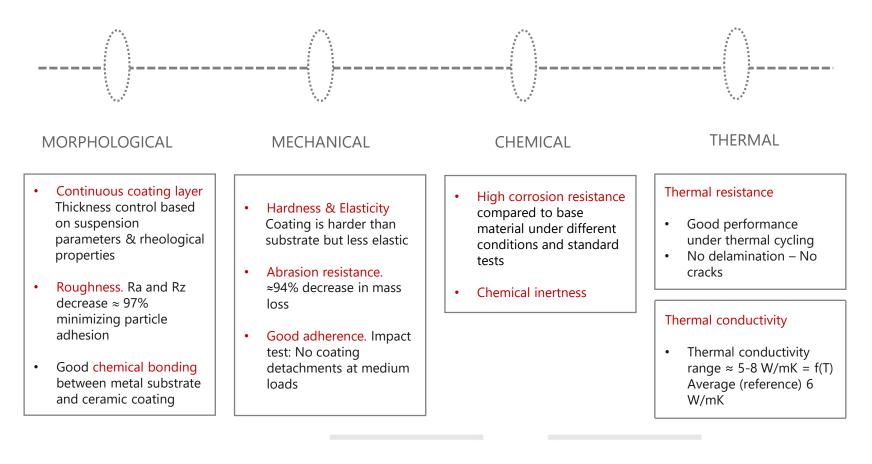
- Solution: 10% HCl at 22°C
- Visual inspection

Loss of brightness during timing test, but ceramic coating continues to protect the metal substrate


Chemical

High corrosion resistance compared to base material

Acid corrosion at boiling temperature


 \circ Conditions:

- Solution: boiling H2SO4 (30%)
- 18 h (UNE-EN ISO 28706-2)

General

GROUP

Comparison with in-situ ceramic coatings

TUBACOAT	Property	In-situ ceramic coatings
↑ Chemical bonding/Low porosity	Corrosion resistance	Lack of bonding/High porosity
1 Low roughness	Clogging resistance	↓ High roughness
↑ High hardness (64 HRC)	Abrasion resistance	Low hardness
↔ Under development (*)	Radiation absorbance	↑ High roughness

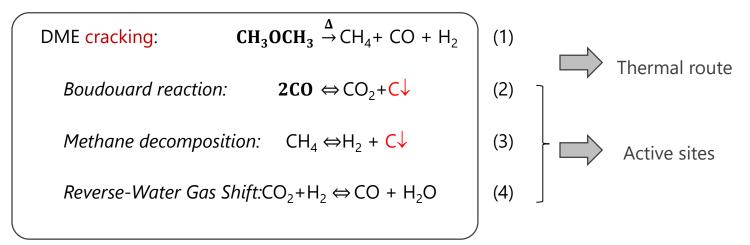
(*) Ad-hoc development according to Tubacoat integrated solution approach

TUBACOAT coating is vitrified above 800°C which provides chemical bonding and "glass" properties, enhancing adherence, corrosion and erosion resistance compared to in-situ coatings

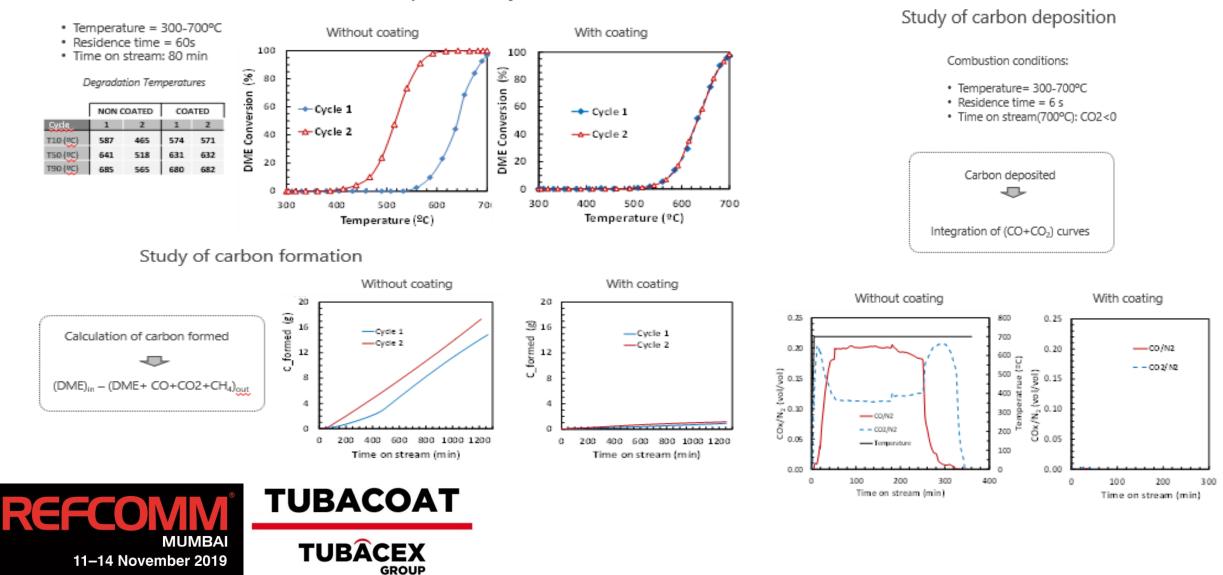
Comparison with in-situ ceramic coatings

TUBACOAT	Property	In-situ ceramic coatings		
↑ Chemical bonding (*)	Thermal cycling resistance	Lack of bonding		
↑ Low roughness	Ash fouling resistance	↓ High roughness		
↑ Chemical bonding	Mechanical resistance	Low adherence		
In factory & local weld coating	On-site application	T Direct application		

(*) Ad-hoc engineering to match thermal expansion coefficient of substrate and coating in whole temp range


TUBACOAT coating is vitrified above 800°C which provides chemical bonding and "glass" properties, enhancing adherence, corrosion and erosion resistance compared to in-situ coatings

Chemical inertness & coking resistance



- DME cracks towards the equimolecular CO, H₂ and CH₄ (Eq. (1)depends on T)
- Parallel reactions of the gaseous products occur (Eqs. 2-4) depending on T and on the characteristics of the contact surface (*active sites on the surface*)

Chemical inertness & coking resistance

Chemical inertia and reproducibility

REFCON

MUMBAI

11–14 November 2019

Chemical inertness & coking resistance

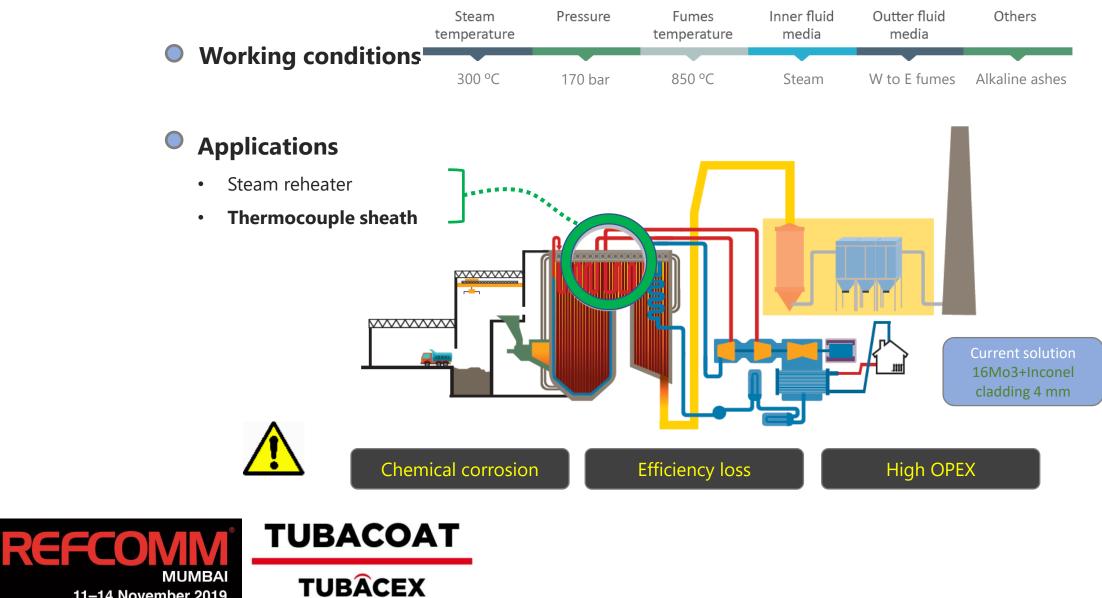
Summary of DME Degradation – Air Combustion Tests

		Grade AISI 347	Non coated tube		Coated tube	
			Cycle 1	Cycle 2	Cycle 1	Cycle 2
DME Degradation		g DME Fed g DME degraded % DME degraded g C degraded g C gas (CO+CH ₄ +CO ₂) g C solid formed % (gC solid formed/gC degraded)	97.5 91.2 93.6 47.6 32.8 14.8 31.2	94.7 90.9 96.0 46.8 29.5 17.3 37.0	96.9 88.9 91.7 48.1 47.2 0.89 1.85	97.5 89.6 92.0 48.8 47.3 1.54 3.16
Air Combustion]	g C deposited %(gC deposited/gC formed) %(gC deposited/gC degraded)	14.6 98.2 30.6	15.7 90.8 33.6	0.016 1.79 0.033	0.017 1.13 0.036

TUBACOAT

TUBÂCEX

GROUP


Conclusions

- The chemical inertness of the coated tube surface avoids the parallel reactions occurring in the active sites present on the non-coated tube
- The carbon deposition-removal cycles (by DME degradation-air combustion) can be repeated without observing deterioration on the coated surface in contact with the gases
- The carbon formed is one order magnitude lower than on non-coated tubes due to the absence of parallel reactions forming soot (Boudouard reaction and CH₄ decomposition)
- The amount of carbon deposited is two order magnitude lower than on the non coated tube, and its percentage referred to carbon degraded is three order magnitude lower than on the non-coated tube

GROUP

Steam reheater & Thermocouple sheath

11–14 November 2019

Steam reheater

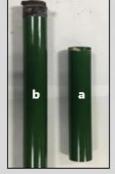
TP310H outer coated tubes vs 16Mo3 + Inconel overlay

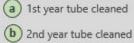
TUBACOAT SOLUTION

First prototypes installed in 2014

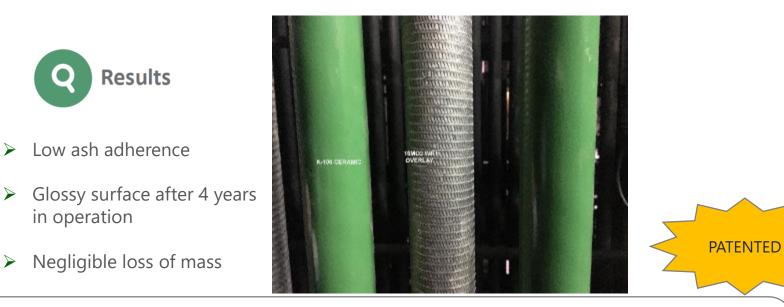
Steam reheater

TP310H outer coated tube before boiler cleaning [plant stoppage] (after 1 year service)




TP310H outer coated tube before boiler cleaning [plant stoppage] (after 2 year service)

TP310H outer coated tube before boiler cleaning [plant stoppage] (after 2 year service)



TUBACOAT

Steam reheater

Conclusions

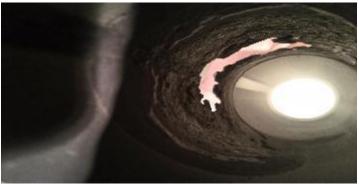
- Excellent corrosion resistance
- Excellent coat bonding under thermal stress
- Homogeneous performance
- No ash adherence to outer surface

Major Improvements

- Longer tube life expectation
- Reduced cleaning and maintenance
- Improved thermal efficiency
- Possibility to increase thermal cycle temperature

Coke calciner

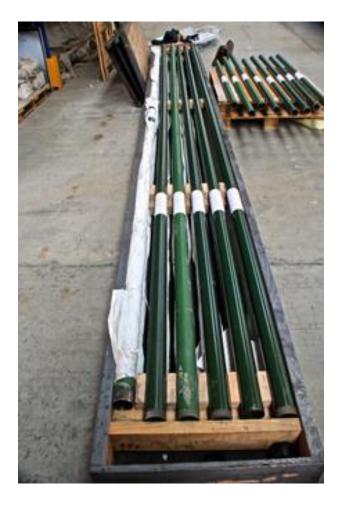
Application

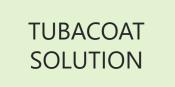

• Coke Calciner Recuperator

Working Conditions

- Oil fumes rich in vanadates at 850°C
- Metal surface 570°C
- Low pressure (welded tube)

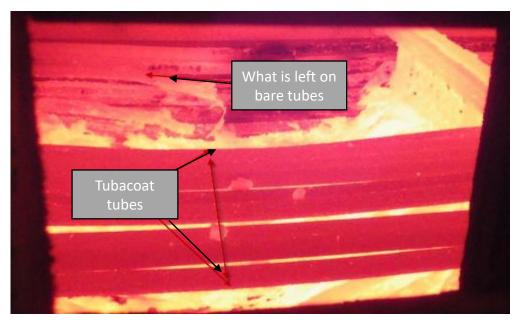
Current solution TP310 (bare)




Chemical corrosion

Efficiency loss

Coke calciner



9 TP310 (OD63.5;WT2.41) outer coated prototypes were placed in the upper row (the hottest) of the calciner recuperator in May 2015

Coke calciner

TUBACOAT SOLUTION

(Image @ 10 months working)

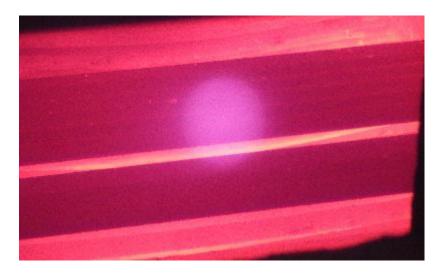
Only the 9 coated tubes were remaining in the area, even suffering overheating during last weeks of operation prior to planned plant shutdown

The rest of tubes were broken and blinded

Coke calciner

≈ 800 tubes (TP310 grade, OD63.5/WT2.41, outer coating), delivered to customer in Jan'2017 and installed in coke calciner in April 2017.

Status: facility in full operation (& continuous performance monitoring)


Coke calciner

TUBACOAT SOLUTION

Real pictures of coated tubes in coke calciner recuperator after 8 months running in full operation

Refinery

Anti-clogging

TUBACOAT ANTI-CLOGGING PROPOSAL

PLEASERA IT AS BAVADO 154

(Coker / Visbreaker / Crude distillation / IGCC downstream lines)

Vacuum Distillation Unit

Commercial trial run in real application – 317 Grade

OD 141, WT 6.5, 5500 mm

Refinery

Corrosion/erosion

TUBACOAT CORROSION/EROSION RESISTANCE PROPOSAL

Overhead condenser

Commercial trial run in real applicationCrude Distillation UnitP235GH

_ OD 30, WT 2.5, 5000 mm

Field Applications

On Site Welding Solution

On-site weld coating

Coated welds

Field Applications

Trials

Refinery & Pe	Refinery & Petrochemical		Powergen & Others		
BP	SHELL		CNIM	WOOD	
CHEVRON	OMV		KOBELCO	ANDRITZ	
REPS	CL		ZABALGAR	BI ENCE	
SILURIA	RELIANCE		UT TEM	ST BIOMASS	

TUBACOAT VALUE PROPOSAL & POTENTIAL APPLICATIONS

WWW.TUBACEX.COM