

DCU Support Skirt Repair & Life Extension

Presented by:

Pedro Amador – VP, Business Development & Technology – AZZ Yelena Rojas Yoris – Director, Business Development & Technology – AZZ B.V.

- Coke drum skirt attachment configurations vary depending on vintage and the original design
- Low Cycle Fatigue induced damage is common at this critical location
- This presentation addresses repair options for the modified crotch design which is one of the most common configurations today
- The repair method selected varies depending on the history of damage, available repair schedule window, and the owner's expectations on operating life.

Skirt Attachment Configurations

Common Skirt Attachment Geometries¹

Damage Mechanism

End of Fill Cycle

Damage Mechanism

1 Hour Into Quench Cycle

Resulting Potential Crack Paths

Upper Knuckle Repair

Indications at the Upper Knuckle Weld

Common Upper Knuckle Cracking

Process:

- 1. Excavate to remove cracks & previous repairs
- 2. Utilize temper bead technique to eliminate PWHT
- 3. Re-contour geometry to minimize stress concentrations

Upper Knuckle Repair Process

 Additional weld metal is applied to add material for re-contouring operation to obtain improved transition geometry.

Upper Knuckle Repair Process

- Modified contour area is optimized to minimize stress
- Optimized Contour is applied by grinding using template created with the results of the analysis

Window Section Replacement

- Method is common when there is significant damage or an accumulation of previous repairs
- Facilitates alloy and geometry changes from the original design
- Proper installation techniques and welding process significantly extend life of repair
- Provides good root geometry to minimize stress risers

Skirt Bulging

Replacement in Progress

Existing Skirt Removal

Section Alignment Fixturing

Proper Root Opening for Welding

Skirt Section Ready for Welding

Welding Completed and Ready for Inspection

- Method is common when there is concentrated damage in the attachment weld
- Repair is not as robust because root geometry is less controllable
- Allows for "on-line" repairs which minimize production schedule

Through Wall Groove Weld Cracking

Root Geometry Concerns

- It is common to encounter previous repairs in this location
- These repairs sometimes leave significant root misalignment
- The resulting root geometry can magnify stresses and shortens time to new crack incubation

Root Geometry Concerns

Groove Weld Root Misalignment

Root Geometry Concerns

Bevel Reconstruction

Reconstructed Bevel Ready for Root Pass

 After root reconstruction, automated temperbead welding is used to fill and cap the groove

 Sometimes customized weld heads are required when there are structural obstructions

Low Profile Weld Head and Track Assembly

 PAUT is used to inspect all welding upon completion.

Selection of Welding Process

Joint Design & Alignment Sensitivity

Field Friendly Joint Design

- Simple Bevel on Existing Material
- J-Prep on Replacement Plate
- Allows Machine Welded Root
- Full Penetration Weld With Acceptable Root Geometry

Frontside

Backside

High Quality Welding Process

AZZ / WSI GTAW Hot Pulse Wire: .035" Inconel 625 240 IPM @ 32hz pulsing

Shot at 2,000 FPS with playback at 30 FPS

Joint Design & Alignment Sensitivity

Sensitivity to Root Gap Variations

Automated "Hot Pulse" process from WSI used for all panel welding

- Welding Process Delivers Volumetric Quality with goo Root Profile
- GTAW Weld Deposit provides significantly better mechanical properties than SMAW and GMAW deposits

Thank You

Presented by:

Pedro Amador – VP, Business Development & Technology – AZZ Yelena Rojas – Director, Business Development & Technology – AZZ B.V.