Reliability Ranking and Life Extension of Coke Drums

Bobby Wright, PE
Charles Becht V, PE

We Solve Problems
Engineering From An Owner’s Perspective
Introduction

- Coke Drums are batch operated, the reliability and profitability are heavily influenced by how they are operated every day.
- US coker operation today is heavily influenced by “opportunity” crudes and running 10-16 hour cycles.
- Industry needs:
 - an approach for ranking and optimization of process & operations versus reliability and profits
 - a tool to allow better planning for maintenance, TAR and capital spending at the refinery and across many different sites.
 - Reliable life extension of the coke drums and entire unit
Why Coke Drum Reliability Matters
Approach - Critical Factors

- Estimated drum life is set by a combination of critical factors, specific for each drum.
- Critical factors are needed for different drum regions:
 - Shell - girth seams
 - Skirt-to-shell junction
 - Skirt
- Factors:
 - Design, maintenance and inspection practices.
 - Operations and Process – switch and quench severity
 - Observed damage – existing condition
- Critical factors drive assessment predicts and extends useful life of the drums (If you actually do something!)
Critical Factors Cause Cracking and Bulging
Approach with Site Personnel

1. Reliability, Safety and Profitability

- **SME’s** - process, operation, inspection, mechanical for site review
- “Actionable” plan for inspection, maintenance and repairs
- Proactive planning maintenance and capital spending
- Optimize daily operations versus drum damage
- Present operating & process practices condition
- Measure local stresses and temperature gradients - HMS
- Reliability “score” ranking provides guidance on damage
Critical Factors - Process and Operations

• Operating review is not just about data – it is an opportunity to **Optimize Process and Improve Daily Operation**
 • Steam and water flow rates are reviewed and optimized for both operation / process efficiency and to reduce damage, cracking, and bulging.
 – Allow better conversion of feed, minimize hot spots
 – Improve consistency through better understanding
 • Inconsistent switch and quench procedures can cause significant stress and fatigue damage in shell and skirt.
 • Measuring “actual” drum thermal gradients and strain gauges is imperative.
 – Accurately measure local drum response, linked to operation.
 – Evaluate effect of inlet types: side, dual, bottom, center.
 – Relate operations to stresses & damage.
• Closing the loop by teaching and training “inexperienced” operators.
Axial Strain: Skirt-to-Shell Junction, 0 deg

Time (minutes)

Temperature (°F)

Microstrain

Thermocouple and Strain Gage Locations
Critical Factors – Switch Temperature

Preheat/Switch Temperature Effect
Critical Factors - Operating Data

Temperature at Start of Fill
Average Cycle = 458.4°F
Critical Factors – Improved Quench

(from PDVSA)
Pulling It Together

- Critical factors are combined to estimate fatigue life
- The combination is based on calibration to numerous case histories
 - Time to initial cracking and bulging
 - Time to first through-wall crack
- Maximize the reliability of the drums and minimize the lost opportunities
 1. **Provide near, mid, long-term** recommendations TAR(s)
 2. Reduce cyclic stress magnitude, damage, going forward
 3. Strategic and proper mechanical repair of damage
Case History - Drum Assessment Tool

1. Idea is that there are defined stages of coke drum life
2. Analysis tested/ultimately calibrated against industry and Becht data
3. Critical Factors: Shell, cone and skirt, welds, switch and quench, cracking, bulging, cycle length, coke type, inlet nozzle type, thickness etc.

- **Stage I: Minor Problems**
 - Proactive maintenance
 - Baseline and routine inspection

- **Stage II: Predictable Crack Growth**
 - More inspection
 - Planned repairs
 - Additional shutdown time required

- **Stage III: Maintenance Intensive**
 - More frequent shutdowns
 - Higher risk of unplanned outages

Goal Planned Spending versus unplanned
Case History - Girth Seam Results

• Results are provided as “quantitative”

• But goal is forward-looking 1-2 TARs out

<table>
<thead>
<tr>
<th>Year</th>
<th>Accumulated Cycles</th>
<th>Retirement Life Fraction Consumed*</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2275</td>
<td>0.39</td>
<td>Current state</td>
</tr>
<tr>
<td>15</td>
<td>3103</td>
<td>0.53</td>
<td>TAR</td>
</tr>
<tr>
<td>18</td>
<td>3723</td>
<td>0.64</td>
<td>Reduce run length to help ensure no through-wall cracking</td>
</tr>
<tr>
<td>21</td>
<td>4344</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4964</td>
<td>0.85</td>
<td>Plan for replacement</td>
</tr>
<tr>
<td>27</td>
<td>5585</td>
<td>0.96</td>
<td>Likely replacement</td>
</tr>
</tbody>
</table>

* Based on retirement cycle life estimate of 5,830 cycles corresponding to no supplemental PAUT/TOFD inspection
Deliverables

1. Process/operations GAP analysis and review
2. Inspection/Reliability GAP analysis and review
3. Critical Factors Ranking and Risk Prioritization
4. Things to optimize or improve from 1 & 2
5. Update Best Practices
6. Develop action plan and TAR plan for next 2 TARs
Summary

• **Optimization** of drum performance to meet production, reliability and profitability goals $$$$
• Can **extend** useful drum life
• **Brings people together – Best Practices** Integration of inspection, maintenance, process and operations personnel for better decisions
• **HMS** findings must be continually **updated** and incorporated
• **Proactive** planning for **maintenance, TAR and capital spending** across one or multiple sites based on risk
Special Thanks

- **Mike Kimbrell**
 - 40 years experience – Becht Coker Process SME
 - Formerly BP - Process and Operations SME Coking worldwide

- **Mitch Maloney**
 - 40 years experience – Becht Coker Process SME
 - Formerly ExxonMobil – Process and Operations SME Coking Worldwide

- **Dave Dewees, PE**
 - 18 years experience - Becht Mechanical SME
 - Fatigue, high temperatures, thermal-stress analysis, crack growth

- **Bob Brown, PE**
 - 30 Years experience – Senior Fellow - Becht Mechanical SME and FFS Specialist
 - Fatigue, high temperatures, thermal-stress analysis, crack growth

- **Ranjan Nadarajah, PhD, PE**
 - 30 years experience - Becht Delayed Coking SME
 - Formerly ExxonMobil Mechanical coke drum SME

- **Clay White**
 - 36 years experience - Becht Materials and Corrosion SME
 - Formerly Phillips 66 - Director Pressure Equipment Mechanical Integrity

- **Chuck Becht V, PE**
 - 15 years experience – VP Engineering
 - Fatigue, high temperatures, thermal-stress analysis, crack growth

- **Bobby Wright, PE**
 - 39 years experience – Becht Manager Refinery Services
 - Formerly Tosco and 29 years coke drum reliability
THANK YOU

Bobby Wright PE
Manager Refinery Services
bwright@Becht.com
281-723-4940

Charles Becht V, PE
Vice President, Engineering
CB5@becht.com
908-727-0976