

Reliability Ranking and Life Extension of Coke Drums

Bobby Wright, PE Charles Becht V, PE

We Solve Problems Engineering From An Owner's Perspective

- Coke Drums are batch operated, the reliability and profitability are heavily influenced by how they are operated every day.
- US coker operation today is heavily influenced by "opportunity" crudes and running 10-16 hour cycles
- Industry needs:
 - an approach for ranking and optimization of process & operations versus reliability and profits
 - a tool to allow better planning for maintenance, TAR and capital spending at the refinery and across many different sites.
 - Reliable life extension of the coke drums and entire unit

Why Coke Drum Reliability Matters

Approach - Critical Factors

- Estimated drum life is set by a combination of critical factors, specific for each drum
- Critical factors are needed for different drum regions:
 - Shell girth seams
 - Skirt-to-shell junction
 - Skirt
- Factors:
 - Design, maintenance and inspection practices.
 - Operations and Process switch and quench severity
 - Observed damage existing condition
- Critical factors drive assessment predicts and extends useful life of the drums (If you actually do something!)

Critical Factors Cause Cracking and Bulging

Approach with Site Personnel

Critical Factors - Process and Operations

- Operating review is not just about data it is an opportunity to Optimize Process and Improve Daily Operation
- Steam and water flow rates are reviewed and optimized for both operation / process efficiency and to reduce damage, cracking, and bulging.
 - Allow better conversion of feed, minimize hot spots
 - Improve consistency through better understanding
 - Inconsistent switch and quench procedures can cause significant stress and fatigue damage in shell and skirt.
- Measuring "actual" drum thermal gradients and strain gauges is imperative.
 - Accurately measure local drum response, linked to operation.
 - Evaluate effect of inlet types: side, dual, bottom, center.
 - Relate operations to stresses & damage.
- Closing the loop by teaching and training "inexperienced" operators.

Health Monitoring Systems (HMS)

8

Critical Factors – Switch Temperature

Critical Factors - Operating Data

Circumference (in)

00:00:25

Critical Factors – Improved Quench

- Critical factors are combined to estimate fatigue life
- The combination is based on calibration to numerous case histories
 - Time to initial cracking and bulging
 - Time to first through-wall crack
- Maximize the reliability of the drums and minimize the lost opportunities
 - 1. Provide near, mid, long-term recommendations TAR(s)
 - 2. Reduce cyclic stress magnitude, damage, going forward
 - 3. Strategic and proper mechanical repair of damage

Case History - Drum Assessment Tool

- 1. Idea is that there are defined stages of coke drum life
- 2. Analysis tested/ultimately calibrated against industry and Becht data
- 3. Critical Factors: Shell, cone and skirt, welds, switch and quench, cracking, bulging, cycle length, coke type, inlet nozzle type, thickness etc.

Case History - Girth Seam Results

- Results are provided as "quantitative"
- But goal is forwardlooking 1-2 TARs out

Many racks	Ι		"		
Cumulative Cracks	Current				
	predicted range of % cycle life	Bulging and cracking possible 35 - 50%		Through-wall cracking more likely 65 - 85%	
(20	40	60	80	100
Vlany racks	1		II		
iive Cracks	Next TAR (4 yrs)				
Cumulat	WITH : PAUT/	2019 TOFD	WITHOUT 2019 PAUT/TOFD		
	predicted range of % cycle life	Bulging and cracking possible 35 - 50%		Through-wall cracking more likely 65 - 85%	
	0 20	40	60	80	100
		% Cycles	to Retireme	nt	

Year	Accumulated Cycles	Retirement Life Fraction Consumed*	Comment			
0	0	0.00				
11	2275	0.39	Current state			
15	3103	0.53	TAR			
18	3723	0.64	Reduce run length to help ensure no through-wall cracking			
21	4344	0.75				
24	4964	0.85	Plan for replacement			
27	5585	0.96	Likely replacement			
* Based on retirement cycle life estimate of 5,830 cycles corresponding to no supplemental PAUT/TOFD inspection						

- 1. Process/operations GAP analysis and review
- 2. Inspection/Reliability GAP analysis and review
- 3. Critical Factors Ranking and Risk Prioritization
- 4. Things to optimize or improve from 1 & 2
- 5. Update Best Practices
- 6. Develop action plan and TAR plan for next 2 TARs

- Optimization of drum performance to meet production, reliability and profitability goals \$\$\$\$
- Can extend useful drum life
- Brings people together Best Practices
 Integration of inspection, maintenance, process and operations personnel for better decisions
- HMS findings must be continually updated and incorporated
- Proactive planning for maintenance, TAR and capital spending across one or multiple sites based on risk

Special Thanks

BECHT

Mike Kimbrell

- 40 years experience Becht Coker Process SME
- Formerly BP Process and Operations SME Coking worldwide
- Mitch Maloney
 - 40 years experience Becht Coker Process SME
 - Formerly ExxonMobil Process and Operations SME Coking Worldwide
- Dave Dewees, PE
 - 18 years experience Becht Mechanical SME
 - Fatigue, high temperatures, thermal-stress analysis, crack growth
- Bob Brown, PE
 - 30 Years experience Senior Fellow Becht Mechanical SME and FFS Specialist
 - Fatigue, high temperatures, thermal-stress analysis, crack growth

Ranjan Nadarajah, PhD, PE

- 30 years experience Becht Delayed Coking SME
- Formerly ExxonMobil Mechanical coke drum SME
- Clay White
 - 36 years experience Becht Materials and Corrosion SME
 - Formerly Phillips 66 Director Pressure Equipment Mechanical Integrity
- Chuck Becht V, PE
 - 15 years experience VP Engineering
 - Fatigue, high temperatures, thermal-stress analysis, crack growth
- Bobby Wright, PE
 - 39 years experience Becht Manager Refinery Services
 - Formerly Tosco and 29 years coke drum reliability

Bobby Wright PE Manager Refinery Services <u>bwright@Becht.com</u> 281-723-4940

Charles Becht V, PE Vice President, Engineering <u>CB5@becht.com</u> 908-727-0976