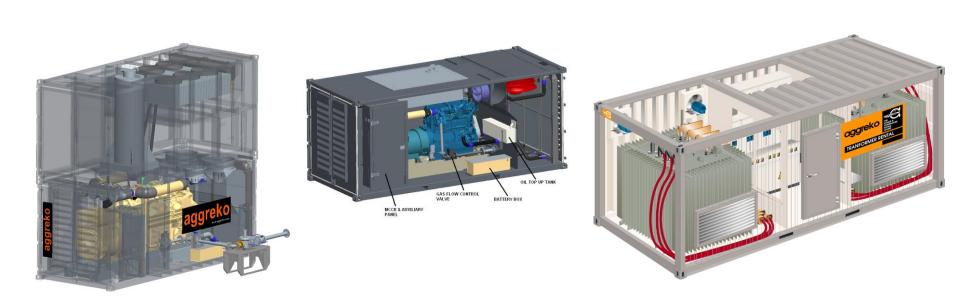




# RENTAL COMPANY BUSINESS STREAMS


POWER GENERATION

> TEMPERATURE CONTROL

## **POWER GENERATION**







## **TEMPERATURE CONTROL**

























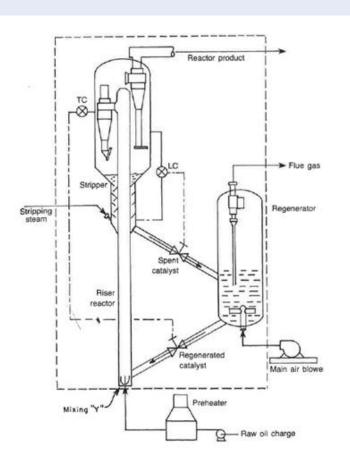



#### AGGREKO PROCESS SERVICES

#### COOLING SOLUTIONS TARGETING PROCESS INDUSTRY

- Process Efficiency Enhancement: VDU vacuum recovery
- Mitigation of Seasonal impact on Utilities conditions:
   FCC Dense Air application
- Temporary Revamps to cope with short term market opportunities: Isomerization de-butanizer
- Recovery Projects: Enhancing Heat transfer in fouled Heat Exchangers
- Risk Management: Engineered recovery plan for aged capital assets
- Turnarounds
  - Scope Reduction
  - Improved Time Schedule

## **Process Enhancement:**


- VDU Vacuum Improvement
- □ FCC Dense Air Injection
- **UOP HF Alkylation**
- WGC Pre-Condensation
- □ Increasing Amine system H<sub>2</sub>S and CO<sub>2</sub> recovery efficiency



#### FCC MAB DENSE AIR INJECTION

Case presented at the MERTC 2018, Kingdom of Bahrein





Summer time problems in sustaining target capacity of the reactor

- > Regeneration problems
- ➤ Air too hot, low density
- > Air mass flow rate insufficient
  - > Oxygen injection at the blower suction

Dense air production at the blower suction can increase regeneration capacity up 10%

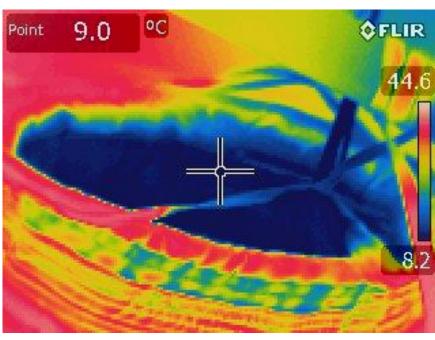


| Air flow rate [m <sup>3</sup> /s] | 10.12 | 10.12    | 20.24 |
|-----------------------------------|-------|----------|-------|
| Temperature [°C/RH]               | 35/55 | 14.6/100 | 24.5  |
| Density [kg/m <sup>3</sup> ]      | 1.132 | 1.219    | 1.176 |
| Enthalpy [kJ/kg]                  | 85.5  | 40.9     | 62.3  |
| T <sub>wb</sub> [°C]              | 27.1  | 14.6     | 21.4  |
| Mass flow rate [kg/s]             | 11.45 | 12.33    | 23.78 |
| Mass flow rate [t/h]              |       |          | 85.61 |
| Gain vs Summer conditions [%]     |       |          | 3.88  |

#### FCC MAB DENSE AIR INJECTION






#### FCC MAB DENSE AIR INJECTION











# FCC MAB DENSE AIR INJECTION: GENERAL CONSIDERATIONS



#### 20,000 BPSD / 2,900 t/d FCC

#### FCC yields

| HVGO              | 1 bbl    | 78.3 \$/bbl  |
|-------------------|----------|--------------|
| <b>C2</b>         | 0.09 bbl | 60 \$/bbl    |
| Olefins           | 0.13 bbl | 93 \$/bbl    |
| LPG               | 0.13 bbl | 41.8 \$/bbl  |
| FCC Naphtha       | 0.61 bbl | 85.15 \$/bbl |
| LCO               | 0.19 bbl | 75.5 \$/bbl  |
| <b>HCO+Slurry</b> | 0.09 bbl | 60.8 \$/bbl  |

- > FCC generates a gross margin of 16.4 \$/bbl of feed
- ➤ Dense Air Injection Improved Capacity 3.88% resulting in increase profitability of 0.636 \$/bbl of feed
- > For a 100 days project 0.636\*20,000\*100=1,272,000 \$

## **Controls of Solutions**



#### **CONTROLS OF SOLUTIONS**











