

ROTTERDAM 30 September–3 October 2019

Content

- ∞ Background
- ∞ Safety philosophy
- ∞ Overview Gelsenkirchen Coker
- ∞ Pre-Automization Steps
- ∞ HLI
- ∞ Sequences
- ∞ Full-Automization
- ∞ Goals

Background

- ∞ Due to an accident in 2001, Gelsenkirchen refinery decided to automize the coker operation
- ∞ New development, as the market didn't provide any solution
- ∞ Development of an engineering concept to ensure permanent controls
- ∞ Development of a logic for implementation into the existing PLC/DCS
- ∞ Integration of a PLC/DCS interlock-system to avoid failure in operation
- ∞ Goal: Reduce residence time for operators in the structure to zero!

Overview Gelsenkirchen Coker

Development phases of automization

Downstream Technology

SP Valve Description

Implementation of MOV's

Implementation of Pressure Interlock

Pre-Automization Steps

13

DDC Layout

Downstream Technology

14

Sequence "pressure test"

Neutralisation and pressure test Drum A

	·			
Step1	Connection to distribution station	utilities	SP7A	open
Step2	Remove oxygen in drum A	Overflow FB-603	SP8.1A	open
Step3	Remove oxygen in drum A	Overflow FB-603	SP8.2A	30%
Step4	Isolation valve at distributor	Steam to drum A	SP13A	open
Step5	Set required amount	Steam to drum A	F-1008	12 t/h
Step6	Neutralisationtemp. > 110°C	Overflow FB-603	SP8.2A	close
Step7	Drum pressure 0.6 bar > op. pressure	Steam to drum A	F-1008	close
Step8	Isolation valve at distributor	Steam to drum A	SP13A	close
Step9	Dewatering at drum lowest point	dewatering	SP9.1A	open
Step10	Dewatering at drum lowest point	dewatering	SP9.2A	20%
Step11	Drum pressure = op. pressure	dewatering	SP9.1A	close
Step12	Dewatering deck 22m	Overflow FB-603	SP8.2A	20%
Step13	Drum pressure 0.6 bar < op. pressure	Overflow FB-603	SP8.2A	close
Step14	System pressurised and dewatered	Overflow FB-603	SP8.1A	Close
	•		· · · · · · · · · · · · · · · · · · ·	

Sequence end

Sequence "disconnecting / stripping"

Disconnecting and Stripping Drum A

Step1	Product inlet is closed	control	SP6A	close
Step2	Set the required amount	Steam to drum A	F-1008	1 t/h
Step3	Blow-Down valve opens	Vapours to Blow Down	SP10.1A	open
Step4	Disconnecting / SP2A closes AND	Vapours to Blow Down	SP10.2A	10 %
Step5	Disconnecting / SP1A closes AND	Vapours to Blow Down	SP10.2A	open
Step6	Set the required amount	Steam to drum A	F-1008	7 t/h
Step7	Connection to distributor	Water to drum A	SP14A	10%
Step8	Set the required amount	Water to drum A	F-0161	4 t/h
Step9	Pressure-time monitoring	Stripping time	DCS	1 min

Failure

Downstream

Sequence – Cutting & Drilling

Eleven adjustable segments have been defined to provide maximum flexibility. In all segments, the speed of the drilling heads, direction of rotation and winch speed (down/up) can be adjusted as required.

Automatic Cutting & Drilling Control

Dynamic Steam and Antifoam Management

Steam control

Antifoam control

Full automization

- Non-Operator drum operation maximum safety
- Operator convenience
- Transparency and monitoring
- Harmonize Coker operation over all shifts
- Exclusion of false operation (High Level Interlock)
- Provision of rapid fault diagnosis and debugging
- Visualization of all program steps in the DCS
- Flexible sequence parameters to optimize cycle time
- Reliable operation

