Panaflow HT

Reliable flow measurement at extreme temperatures

Dorus.Bertels@bhge.com
Contents

• Ultrasonic Flowmeters
• Advantages of Ultrasonic Flowmeters
• PanaFlow HT Overview
• PanaFlow HT Details
• Performance specifications

• Case Study
• Cost Savings
• GE Ultrasonic Flowmeters
• PanaFlow HT Summary
Theory of Operation

Transit Time Technique

= Transducer is *both* the *transmitter* and *receiver*
= Ultrasonic Pulses

\(t \) = Transit Times

- Upstream direction, \(t_{up} \)
- Downstream direction, \(t_{dn} \)

\(t_{up} \) = Ultrasound is *decelerated* by flow
\(t_{dn} \) = Ultrasound is *accelerated* by Flow

\[V = f(t_{up}, t_{dn}) \]
\[Q = V \times A \]
Advantages of Ultrasonic Flowmeters

• No maintenance
 - No periodic calibration required
 - No drifting readings
 - No moving parts that require maintenance
 - Low total cost of ownership

• No restrictions in the pipe
 - No risk of solid particulates damaging the flowmeter or clogging the line

• Fluid Independent
 - Measurement of transit time is independent of the flowing fluid
 - Transit time technique provides soundspeed as a diagnostic that can be used to identify changes in stream composition

• High turndown ratio
 - 400:1 (0.1-40 ft/s or 0.03-12.2 m/s) in liquids
 - Larger turndown in gas

• Advanced Diagnostics
 - Soundspeed, Signal to Noise (SNR), and other diagnostics allow detail understanding of flowmeter and process.

• Bi-direction flow measurement

• Multiple ultrasonic flowmeters available
 - Custody transfer to portable clamp-on measurements
PanaFlow HT Overview

PanaFlow HT is a wetted ultrasonic flowmeter for measurement of liquids in either nominal or extremely high or low temperatures.

Complete assembly includes:
(1) XMT900 electronics, (2) BWT transducers, (3) FTPA buffers, (4) Meter body
Advantage #1 of PanaFlow HT
• Bundle Waveguide Technology™ (BWT)

- Advantages of buffers
 - Transducers are outside of the extreme temperatures
 - Transducers avoid thermal shock with risks of cracking crystals
 - Transducers are removable and can be replaced without shutting down the process
Advantage #1 of PanaFlow HT

• Bundle Waveguide Technology™ (BWT)

• Advantages of Bundled Waveguide Technology
 - Better signal shape and SNR over solid buffers
 - Measurements up to 600°C (1112°F)
 - Measurements down to -200°C (-328°F)
Advantage #1 of PanaFlow HT

• Bundle Waveguide Technology™ (BWT)

• Advantages of Bundled Waveguide Technology
 - Available up to 2500# flange rating
Advantage #1 of PanaFlow HT

• Bundle Waveguide Technology™ (BWT)

• Advantages of Bundled Waveguide Technology
 - A strong history of successfully measuring in difficult applications
 - Tolerant to fouling
Advantage #2 of PanaFlow HT

• Time Measurement.

 • Time of Flight = T_w (time in buffer “dead time”) + T_f (time in fluid)
 • To improve measurement, T_w must be eliminated
 • Using Pulse-Echo technique allow for active T_w elimination
 • Pulse-Echo is the reflection of signal at the end of the buffer
 • As a result, T_f is measured very accurately with changing temperatures
Advantage #3 of PanaFlow HT

• SIL Certification

• SIL Certification: We will be the first company to have a **SIL certified** ultrasonic liquid flowmeter!!!
 - Third party certification on design
 - SIL2 Certification = Confidence in flowmeter measurement (reliable)!
 - Extensive testing and documentation required to obtain SIL certification

• What is SIL?
 - SIL = Safety Integrity Level
 - SIL is discrete level (ranked 1 to 4); SIL4 is the highest level of safety (less chance of failure) and SIL 1 is the lowest
 - SIL level is used for specifying the safety integrity requirements of the Safety Instrumented Functions (SIF) to be allocated in a Safety Instrumented Systems (SIS).
 - For PanaFlow HT, the probability of failure on demand (PFD) or dangerous failure has been determine through extension testing and documentation.
 - PanaFlow HT can be used for your safety system or process control system.

<table>
<thead>
<tr>
<th>Level</th>
<th>Average PFD per Year (low demand mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIL 4</td>
<td>10-5 to 10-4</td>
</tr>
<tr>
<td>SIL 3</td>
<td>10-4 to 10-3</td>
</tr>
<tr>
<td>SIL 2</td>
<td>10-3 to 10-2</td>
</tr>
<tr>
<td>SIL 1</td>
<td>10-2 to 10-1</td>
</tr>
</tbody>
</table>
Performance specifications

• **Accuracy**
 - ± 0.5% of reading
 - Range: 3 to 40 ft/s (0.9 to 12.2 m/s)
 - Calibration fluid: water (three points)

• **Repeatability**
 - ±0.2% of reading, 3-40 ft/s (0.9-12.2 m/s)
 - Range: 3 to 40 ft/s (0.91 to 12.19 m/s)

• **Range (bidirectional)**
 - -40 to 40 ft/s (-12.19 to 12.19 m/s)

• **Rangeability (overall)**
 - 400:1

• **SIL certification**
 - IEC61508 certified
 - SIL2 certification with signal design system
 - SIL3 certification achievable with redundant design system
Case study cokers

• Summary
 • Delayed coking unit objective: convert low value residual products to lighter products of higher value and produce a coke product for resale.
 • Conversion accomplished by heating the feed to high T&P and introducing into a large drum to provide soaking or residence time for the reactions to take place
 • Typical applications: measure feed stock to the vacuum distillation and coking units

• Typical application details
 – Locations: VDU and DCU
 – Fluid: Heavy, sour, low-cost crude
 – Requires high T&P to convert to useable liquids and gas.
 – “Coke chunks” are issues
 – Typical installation
 • Eight lines feed VDU and DCU
 • Improves heat transfer in unit
 • Lines are flashed into furnace at low pressure
 – Loss of flow to furnace will cause shutdown
 • Prevents damage to unit
Case study cokers

• General issues
 • Safety guidelines
 If unit loses two of eight flows, furnace would trip and shut down the unit (and $$$)
 EHS concerns with working in DCU/VCU areas (high temperatures and pressures)
 • Reliability and maintenance
 Full time flow meter maintenance required
 Questioning reliability of flow meters
 Concerns about low end accuracy of meters

• Vortex meters
 • Installation issues
 Dual head meter had difficulty with the application
 • Flow deviation between dual head readings
 • Flow read zero with no response to valve opening
 To prevent unit shutdown, maintenance required.
 • Bypass opened to allow steam cleaning of meter
 • Some meters did not recover when back in service

 − Root cause: vortex bluff body became coated with coke fines and solid chucks. This caused the bluff body not to float properly, causing flow measurement to diverge or fail.
Case study cokers

- DP meters (orifice or wedge meters)
 - Typical meter used in the field before ultrasonics
 - Potential for clogging due to DP restriction and impulse lines (solid particulates).
 - Requires cleaning with either steam or hot hydrocarbon liquid
 - Wedge begins to pit over time
 - Wedge meter nozzles or orifice plates can plug
 - Diaphragm can coat with fines
 - Manufactures suggests pulling meter to send back for recal/repair of transmitter, refilling the impulse lines, and having the wedge reshaped
 - User must clean meter prior to shipment
 - Recalibration required
Case study cokers

- **Solution**
 - Customer CTQ: A more reliable technology for the flow measurement
 - Solution: GE ultrasonic flow meter with BWT technology
 - No routine maintenance required
 - No issues with solid ‘coke’ build up buffers
 - No pressure drop or obstructions
 - High turndown (40:1) with excellent low end resolution
 - Drift free operation
- **Advantages**
 - Improves feed reliability with no false furnace “trips” due to poor measurements
 - Provides a safer workplace and reduces exposure time in units
 - Better overall system control and productivity
 - Reduces maintenance costs for feed flow meters
 - Field proven since 1998
Cost Savings

• Assumptions
 Approximately one “other” meter failure or maintenance cycle every other week
 90% fixed with steam or other fluid blow down
• Two operators to get it running
• Up to four hours of labor
• Example: LNG measurements
 10% required removing from service
• Up to five operators, pipe fitters, technicians
• Up to six hours labor
 Labor cost average = $50/hour

<table>
<thead>
<tr>
<th>Failures</th>
<th>Hours Work</th>
<th>People</th>
<th>Labor Rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Clean</td>
<td>23</td>
<td>4</td>
<td>2</td>
<td>$50/Hr</td>
</tr>
<tr>
<td>Pull Out</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>$50/Hr</td>
</tr>
<tr>
<td>Total Failures</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Annual Maintenance Cost: **$12,800***

* Note
- Does not include cost of installing of wasted steam ($$ through energy costs) or high temperature hydrocarbon liquid (loss of production)
- Does not include cost of any incorrect shutdown, which is more significant than calculation.
PanaFlow HT Summary

• PanaFlow HT is a wetted ultrasonic flowmeter for measurement of liquids in either nominal or extremely high or low temperatures.

General Specifications
• Pipe sizes: 3” to 16” standard (>16” upon request)
• Accuracy: +/- 0.5% (calibrated)
• SIL certification (by design) pending
• Active Tw Measurement
• Meter bodies: CS, SS, or 9Cr-1Mo standard options
• Temperature Range: -190 to 600°C
• Pressure Range: MAOP (150# to 600#) or 3480 psi
• Certification: CSA/FM, ATEX, and IECEX pending
• 3 Meter Configurations:
 • 1 path, tilted diameter, one meter
 • 2 path, mid radius, one meter
 • 2 Path, tilted diameter, two meter
• Typical Outputs: 4-20mA/HART/SIL or FF
• New PC Software: Vitality
PanaFlow HT
Panametrics Ultrasonic Liquid Flow Meter

• Questions?
Backup Flexible Solutions.... Yes

• Alternative materials, sizes, flanges, and designs are available
• Application and engineering support
• Manufacturing and supply chain expertise
Backup PanaFlow HT Details

• XMT900 Transmitter
 • Enclosure: Epoxy coated aluminum (IP67)
 • Power: 85-260 VAC or 12-28 VDC
 • Display: Local display with built-in magnetic, six-button keypad, for full functionality operation

 – Communication
 • Option “A”:
 » One SIL rated analog/HART output
 » Two digital outputs
 » Modbus (RS485) / Service Port
 • Option “B”
 » One SIL rated analog/HART output
 » Additional analog output (not SIL rated)
 » Two digital outputs
 » Modbus (RS485) / Service Port
 • Note: Digital output programmable as:
 » Totalizer Pulse
 » Frequency
 » Alarm Control
 » Control Output

• Transducers/Buffers (0.5 or 1 MHz)
 – High Temperature: -200 to 600oC
 – Normal Temperature: -200 to 315oC

• System Rating (Pending)
 – FM Explosionproof, C1, Div 1, Group B-D
 – ATEX Flameproof, II 2 G Ex d II C T6
 – IECEX Flameproof, II 2 G Ex d II C T6
Backup PanaFlow HT Details

- Configurations:
 - Z1H: 1 Path, Tilted Diameter, One Meter
 Standard design for quality measurement
 - Z2H: 2 Path, Parallel Mid Radius, One Meter
 Additional path for redundant measurement
 - R2H: 2 Path, Staggered Tilted Diameter, Two Meters
 • Completely redundant system for increased security in measurement
Backup PanaFlow HT Details

- **Meter Body:**
 - **Size:**
 - 3” to 16” standard
 - Up to 36” available upon request
 - **Schedule/Flange Rating:**
 - ANSI 150# RF (WN) / Std Sch
 - ANSI 300# RF (WN) / XS Sch
 - ANSI 600# RF (WN) / XS Sch
- **Design:**
 - ASME B31.3 & NACE MR0103
 - PED & NACE MR0103
 - ASME B31.3, CRN registered, nd NACE MR0103
- **Material:**
 - Carbon steel (ASTM A106 Gr. B - ASTM A105)
 - 316/316L Stainless Steel (ASTM A312 Gr 316/L - A182 Gr. 316/L)
 - 9Cr-1Mo meter body (ASTM A335 Gr. P9 - ASTM A182 Gr. F9)

- **Electronics Mounting:**
 - Local ($T_{max} = 302^\circ F/150^\circ C$)
 - Remote
 - 25, 50, or 100 Feet