



# Panaflow HT Reliable flow measurement at

# extreme temperatures

Dorus.Bertels@bhge.com

### REFCOMM ROTTERDAM 30 September–3 October 2019



October 25, 2019

Confidential. Not to be copied, distributed, or reproduced without prior approval.

© 2017 Baker Hughes, a GE company, LLC - All rights reserved.

### Content

- Ultrasonic Flowmeters
- Advantages of Ultrasonic Flowmeters
- PanaFlow HT Overview
- PanaFlow HT Details
- Performance specifications

- Case Study
- Cost Savings
- GE Ultrasonic Flowmeters
- PanaFlow HT Summary





# **Transit Time Technique**

- = Transducer is *both* the
   transmitter and receiver
   = Ultrasonic Pulses
- t = Transit Times
  - Upstream direction,  $t_{up}$
  - Downstream direction,  $t_{dn}$
- t<sub>up</sub> = Ultrasound is *decelerated* by flow
- t<sub>dn</sub> = Ultrasound is accelerated by Flow





# Advantages of Ultrasonic Flowmeters

#### No maintenance

- No periodic calibration required
- No drifting readings
- No moving parts that require maintenance
- Low total cost of ownership

### No restrictions in the pipe

- No risk of solid particulates damaging the flowmeter or clogging the line

### Fluid Independent

- Measurement of transit time is independent of the flowing fluid
- Transit time technique provides soundspeed as a diagnostic that can be used to identify changes in stream composition

### High turndown ratio

- 400:1 (0.1-40 ft/s or 0.03-12.2 m/s) in liquids
- Larger turndown in gas

### **Advanced Diagnostics**

- Soundspeed, Signal to Noise (SNR), and other diagnostics allow detail understanding of flowmeter and process.

### **Bi-direction flow measurement**

### Multiple ultrasonic flowmeters available

Custody transfer to portable clamp-on measurements









Confidential. Not to be copied, distributed, or reproduced without prior approval.

# PanaFlow HT Overview

PanaFlow HT is a wetted ultrasonic flowmeter for measurement of liquids in either nominal or extremely high or low temperatures.

Complete assembly includes:

(1) XMT900 electronics, (2) BWT transducers, (3) FTPA buffers, (4) Meter body





Bundle Waveguide Technology<sup>™</sup> (BWT)



#### Advantages of buffers

- Transducers are outside of the extreme temperatures
- Transducers avoid thermal shock with risks of cracking crystals
- Transducers are removable and can be replaced without shutting down the process





Bundle Waveguide Technology<sup>™</sup> (BWT)

### Advantages of Bundled Waveguide Technology

- Better signal shape and SNR over solid buffers
- Measurements up to 600°C (1112 °F)
- Measurements down to -200°C (-328 °F)





### Bundle Waveguide Technology<sup>™</sup> (BWT)





Confidential. Not to be copied, distributed, or reproduced without prior approval.

#### **Bundle Waveguide Technology**

- Introduced 1998
- A strong history of successfully measuring in difficult applications
- Tolerant to fouling





### **Time measurement**

BA

- Time of Flight = T<sub>w</sub> (time in buffer "dead time") + T<sub>f</sub> (time in fluid)
- To improve measurement, T<sub>w</sub> must be eliminated
- Using Pulse-Echo technique allow for active Tw elimination
- Pulse-Echo is the reflection of signal at the end of the buffer
- As a result, T<sub>f</sub> is measured very accurately with changing temperatures



### **SIL Certification:**

- We are the first company to have a <u>SIL certified</u> ultrasonic liquid flowmeter!!!
- Third party certification on design according IEC61508.
- Extensive testing and documentation required to obtain SIL certification

### What is SIL

- SIL = Safety Integrity Level
- SIL is discrete level (ranked 1 to 4); SIL4 is the highest level of safety (less chance of failure) and SIL 1 is the lowest
- SIL level is used for specifying the safety integrity requirements of the Safety Instrumented Functions (SIF) to be allocated in a Safety Instrumented Systems (SIS).
- For PanaFlow HT, the probability of failure on demand (PFD) or dangerous failure has been determine through extension testing and documentation.
- PanaFlow HT can be used for your safety system or process control system.

| Level | Average PFD per Year<br>(low demand mode) |  |
|-------|-------------------------------------------|--|
| SIL 4 | 10-5 to 10-4                              |  |
| SIL 3 | 10-4 to 10-3                              |  |
| SIL 2 | 10-3 to 10-2                              |  |
| SIL 1 | 10-2 to 10-1                              |  |





# Application Example Delayed Coking



Confidential. Not to be copied, distributed, or reproduced without prior approval.

### What customers are looking for?

- Get **reliable and accurate flow measurement** on the feed furnace lines as this is a **safety critical process** which can require SIL rating. Failure to achieve these could lead to wrong decisions resulting in a potential furnace blast
- Minimize costly process disruptions due to lack of reliability generating high OPEX
- Effectively evaluate Delayed Coker operations
- Safe working conditions for staff and environment





### What are the current challenges?

- Traditional technologies like Wedge meters, Venturis, orifice plates and vortex, all have many drawbacks due to the **clogging** nature of the heavy residue feed: High OPEX
- Unclogging process requires permanent or regular purging using distillates and/or steam = high cost, impact of unit yield and safety risk for staff
- High safety requirements = redundant measurements
   (2, 3 or 4). But large inconsistencies within the same pass line
   = unable to efficiently control the process





### Who cares?

• Process Engineers, Operation Managers, Instrument Technicians with the furnace feed lines

#### Concerns

- Safety: Furnace tube plugs & ruptures and unit shutdown
- Reliability:

(1) Decreased performancebetween decoking processes or(2) Unnecessary shutdowns dueto incorrect flow measurements







### **Delayed Coking Unit**

### Where do we fit in? Furnace feed line

- 1 to 2 DCUs per refinery capacity
- 1 to 3 heaters based on DCU capacity
- 4 to 6 heater passes per heater
- 2 to 4 measurement points per heater pass
  - 1 for process control
  - 1 to 3 for safety system

#### **One Customer Example**

- 30 passes with 4 points of measurement each
- \$68K per pass (four measurements per spool)
- Overall \$2.0M win!
- Why? Benefits of ultrasonic flowmeters with proven track record



Drums



### **Delayed Coker Savings using Ultrasonic Meters**

- Facts and Assumptions
- 8 Pass Lines/ Furnace
- 24 Flow measurement points (2 for ESD, 1 for Process Control)
- 48 Impulse lines for orifice plates
- 40,000 bpd capacity
- \$14 profit/ bbl

| Total Operating Cost Per Year |                  |  |  |  |
|-------------------------------|------------------|--|--|--|
| Purging                       | \$364,000        |  |  |  |
| Maintenance                   | \$43,000         |  |  |  |
| Unplanned Shutdown            | \$560,000        |  |  |  |
| Total                         | \$43K to \$967K! |  |  |  |

#### **Routine Maintenance**

- Calibrate pressure sensor, replace DP element
- Assume 24 hrs/ year/ measurement point
- 24 hrs \* 24 meters \* \$75/hr = \$43 k

#### Purging

- 1.5 bpd purge rate/ impulse \* 48 impulse = 72 bpd
- 72 BPD = 26,000 bbl/ year
- 26,000 bbl/year \* \$14 lost profit/ barrel = \$364 k/ year

#### **Unplanned shutdown**

 \$14 profit/ bbl \* 40,000 bbl =
 \$560 k/ day in lost profit per day DCU is shut down



### **Customers have options.... But with high maintenance & low reliability**

|               | Orifice Plates                                                                                                                                                                                                                                                                                                                | Wedge Meters                                                                                                                                                                                                                                      | Vortex Meters                                                                                                                                                                                                                                                                                  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theory        | <ul> <li>Differential pressure measurement</li> <li>A flat metal plate with an opening restricts the flow</li> <li>Flow rate is calculated based on pressure differential.</li> </ul>                                                                                                                                         | <ul> <li>Differential pressure measurement</li> <li>A flat metal plate with an opening restricts the flow</li> <li>Flow rate is calculated based on pressure differential.</li> </ul>                                                             | <ul> <li>Frequency measurement</li> <li>A bluff body is placed in the process stream creating alternating shedding vortices</li> <li>Flow rate is proportional to the shedding frequency.</li> </ul>                                                                                           |
| Advantages    | <ul> <li>Basic element is robust and entirely mechanical with no moving parts</li> <li>DP-transmitter isolatable for calibration</li> <li>Cheap installation cost</li> <li>SIL certification on transmitter</li> </ul>                                                                                                        | <ul> <li>Small pressure drop</li> <li>Basic element is robust and entirely mechanical with no moving parts</li> <li>Membrane reduces need for heat tracing of impulse line</li> <li>SIL certification on transmitter</li> </ul>                   | <ul> <li>No moving parts to wear</li> <li>No routine maintenance required</li> <li>Stable long term accuracy and repeatability</li> <li>Larger rangeability</li> <li>SIL certification available</li> </ul>                                                                                    |
| Disadvantages | <ul> <li>Asphaltenes stick to the surface walls as the fluid cools</li> <li>Risk of clogging in impulse lines</li> <li>Pipe shut down for exchange of primary element</li> <li>Limited turndown range</li> <li>Effected by changes in density, pressure and viscosity</li> <li>Pressure tubing needs trace heating</li> </ul> | <ul> <li>Asphaltenes stick to the surface of the membrane reducing sensitivity</li> <li>Pipe shut down for exchange of primary element</li> <li>Limited turndown range</li> <li>Effected by changes in density, pressure and viscosity</li> </ul> | <ul> <li>Cannot be used for low velocities</li> <li>Pulsating flow vortices adversely affect measurement accuracy</li> <li>Not for high viscosity fluids</li> <li>Coke on bluff body causes heavy drift</li> <li>Frequent steaming necessary for cleaning (very costly maintenance)</li> </ul> |



### **PanaFlow HT**

#### **Summary**

- PanaFlow HT is a wetted ultrasonic flow meter. Designed for measurement of liquids in nominal or extreme process temperatures
- PanaFlow HT is the world's first ultrasonic flow meter to be SIL certified to IEC61508. **Certification by design** establishes reliability and safety
- 3<sup>rd</sup> party certification with extensive testing
- SIL2 certification with single design system
- SIL3 achievable with redundant design system

#### **Advantages**

- Improves feed reliability with no false furnace "trips" due to poor measurements
- Provides a safer workplace and reduces exposure time in units
- Better overall system control and productivity
- Reduces maintenance costs for feed flow meters
- Field proven since 1998







# PanaFlow HT Panametrics Ultrasonic Liquid Flow Meter

•Questions?





Confidential. Not to be copied, distributed, or reproduced without prior approval.

# Backup SIL 2 and 3 PanaFlow HT Configurations

- Z1H: 1 Path, Tilted Diameter, One Meter. Standard design for quality measurement Sil 2.
- Z2H: 2 Path, Parallel Mid Radius, One Meter. Additional path for redundant measurement Sil 2.
- R2H: 2 Path, Staggered Tilted Diameter, Two Meters in one body. Completely redundant system for increased security in measurement Sil 3.





# **Backup Track Records Heavy Residue Applications**

Petronor (Repsol Group) Bilbao - Spain

Motiva Port Arthur, TX – USA

Dow Chemical Tarragona - Spain

Shell Per+ Pernis - The Netherlands

Saudi Aramco Rabigh - Saudi Arabia

ConocoPhillips Sweeney, TX - USA

ConocoPhillips Wood River, IL - USA

Marathon Petroleum Garyville, LA - USA

Chevron Pascagoula, MS – USA Shell Anacortes, WA - USA

Repsol La Coruña, Spain

Yanbu Export Refinery Project – Yanbu, Saudi Arabiar

Tupras Izmit - Turkey

Total Antwerp (Optara), Belgium

Socar - STAR project Izmir - Turkey

Petromanagas Venezuela

BP Whiting Indiana – USA Hunt Refining Company Alabama – USA

Total Feyzin – France

Total Port Arthur, TX – USA

Cepsa San Roque - Spain

Takreer, Ruwais, UAE

Orpic Sohar, Sultanate of Oman

Preem Refinery Lysekil - Sweden

Lotos Refinery Gdańsk – Poland



Confidential. Not to be copied, distributed, or reproduced without prior approval.

# Backup Flexible Solutions.... Yes

- Alternative materials, sizes, flanges, and designs are available ۲
- Application and engineering support
- Manufacturing and supply chain expertise •









# Backup PanaFlow HT Details

- XMT900 Transmitter
  - Enclosure: Epoxy coated aluminum (IP67)
  - Power: 85-260 VAC or 12-28 VDC
  - Display : Local display with built-in magnetic, six-button keypad, for full functionality operation
  - Communication
    - Option "A":
      - » One SIL rated analog/HART output
      - » Two digital outputs
      - » Modbus (RS485) / Service Port
    - Option "B"
      - » One SIL rated analog/HART output
      - » Additional analog output (not SIL rated)
      - » Two digital outputs
      - » Modbus (RS485) / Service Port
    - Note: Digital output programmable as:
      - » Totalizer Pulse
      - » Frequency
      - » Alarm Control





- Transducers/Buffers (0.5 or 1 MHz)
  - High Temperature: -200 to 600oC
  - Normal Temperature: -200 to 315oC
- System Rating (Pending)
  - FM Explosionproof, C1, Div 1, Group B-D
  - ATEX Flameproof, II 2 G EEx d II C T6
  - IECEX Flameproof, II 2 G EEx d II C T6

# Backup PanaFlow HT Details

- Meter Body:
  - Size:
    - 3" to 16" standard Up to 36" available upon request
  - Schedule/Flange Rating: ANSI 150# RF (WN) / Std Sch ANSI 300# RF (WN) / XS Sch ANSI 600# RF (WN) / XS Sch
  - Design:

ASME B31.3 & NACE MR0103 PED & NACE MR0103 ASME B31.3, CRN registered, and NACE MR0103

• Material:

Carbon steel (ASTM (A106 Gr. B - ASTM A105) 316/316L Stainless Steel (ASTM (A312 Gr 316/L - A182 Gr. 316/L) 9Cr-1Mo meter body (ASTM A335 Gr. P9 - ASTM A182 Gr. F9)



- Electronics Mounting :
  - Local (T<sub>max</sub> = 302°F/150°C)
  - Remote
    - 25, 50, or 100 Feet





# Backup Performance specifications

### Accuracy

- ± 0.5% of reading
- Range: 3 to 40 ft/s (0.9 to 12.2 m/s)
- Calibration fluid: water (three points)
- Repeatability
  - ±0.2% of reading, 3-40 ft/s (0.9-12.2 m/s)
  - Range: 3 to 40 ft/s (0.91 to 12.19 m/s)
- Range (bidirectional)
  - -40 to 40 ft/s (-12.19 to 12.19 m/s)
- Rangeability (overall)
  - 400:1
- SIL certification
  - IEC61508 certified
  - SIL2 certification with signal design system
  - SIL3 certification achievable with redundant design system

| Features & Benefits                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>No drifting flow measurement</li> <li>No periods collaration impand</li> <li>No mantemate</li> <li>No restriction in the ppe</li> <li>Relable measurement by design-<br/>MCG1508 certification perding)</li> <li>Plaw measurement in extremely high-<br/>placess temperature (so0°C/1112*Pl<br/>applications)</li> <li>Plaw measurement in extremely low-<br/>proops temperature (200°C/1528*Pl<br/>applications)</li> <li>Bi-directional measurement</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

