

Chevron Lummus Global

# **Residue Hydrocracking Solutions For Refinery Sustainability**

#### RefComm Galveston April 29 - May 3, 2019

Dan Gillis - Director, Technology Chevron Lummus Global

A Chevron and McDermott Joint Venture



#### **Presentation Topics**





# Chevron Lummus Global A Chevron and McDermott 50:50 Joint Venture





Addressing IMO 2020 and crude to chemicals objectives with innovative solutions

#### **Operational Excellence Through Chevron**



#### One of the world's leading refiners

- High level of hydroprocessing
- Operates >100 high-pressure hydroprocessing reactors
- In USA operates 6 ISOCRACKING units
- Operate 4 Delayed Cokers





#### **CLG Benefits as:**

- Part of Chevron Hydroprocessing Best Practice Network
- Draws on Chevron's operating expertise

#### **Entire Project Support from McDermott**





# Market Pressures Driving Residue Upgrading Solutions to High Conversion





#### **Residue Hydrocracking is best fitted to meet all requirements**

# Crude Oil to Chemicals: Optimal Refinery – Steam Cracker Complex





# **Crude Oil to Chemicals: Optimal Refinery - Petrochemicals Complex**







# THE SOLUTION TO MAXIMIZING CONVERSION TO HIGH-VALUE PRODUCTS

# **THE LC-FINING™ PLATFORM**

#### Robust LC-FINING<sup>™</sup> Ebullated Bed Residue Hydrocracking Technology Platform





#### **Reactor Features**

- Upflow Reactor
- □ Low pressure drop
- Recycle pump backmixes and expands single catalyst bed
- Nearly isothermal
- Catalyst can be added and withdrawn on line

#### LC-FINING<sup>™</sup> Residue Hydrocracking Meets Future Product Demands





# LC-FINING<sup>™</sup> Product Separation and Fractionation System





### LC-FINING<sup>™</sup> Reliability Enhanced by Design Features and Best Practices



#### **Customer Performances:**

- A 96%+ on-stream factor
- B ran for 42 months straight from first day of oil in
- C has 3 units with typically
  4 years between turnarounds

#### Reliability and High Operating Factors are Absolutely Essential!



#### Whole Refinery Operation will Ride on Residue Upgrading Unit!

## **LC-FINING™ Commercialization of Innovations**



#### Innovations

- PSA and Membranes for recycle gas purification
- Interstage reactor separator
- Close coupled integrated hydrotreating
- Combined LC-FINING and hydrocracking



#### Lowers Costs and Increases Benefits

#### LC-FINING<sup>™</sup> with Integrated Hydrotreating Produces Clean High Quality Products





#### LC-FINING<sup>™</sup> with Integrated Two-Stage Hydrocracking Maximizes Distillates





Key is a "clean" second-stage for Selective Cracking to Euro V Diesel



# WHY IS CONVERSION LIMITED IN RESIDUE HYDROCRACKING?



#### <u>565°C+</u>

□ - CCR ~ 24%.

- Hydrogen Content : 10 wt.%
- Asphaltenes : 15 wt.%

#### <u>700°C+</u>

- □ CCR ~ 38%.
- Hydrogen Content : 9.2 wt.%
- Asphaltenes : 56 wt.%

\*Arab Heavy VR

# As we push conversion we have to convert more and more difficult type of asphaltenes!

#### What Do We Know About Asphaltenes?



Asphaltenes can be of many different types – good, bad and really ugly!

GoodBadReally Ugly

- CLG has developed proprietary methods to identify types
- Allows us to know at what conversion level the converted, heaviest asphaltenic cores will drop out of solution (sediment formation)
- Defines the maximum conversion without serious reactor & downstream equipment fouling
  CLG large database of commercial data

used to set conversion limits for each unit

# Managing Sediment Formation is the <u>Key</u> to High Conversion in Residue Hydrocracking





# Aromatic Diluents Improve Solvency and Reduce Sediment



#### **Soluble Molybdenum Co-Catalyst Benefits?**





*Type of pilot plant important in determining benefits* 

Several units have seen severe fouling under reactor distribution grid when using co-catalyst



- Unit A and Unit B are both LC-Fining Units.
- Unit A and Unit B were commissioned within 3 years of one another, and so have incorporated very similar equipment technology.
- Both Units have been designed with 3 Reactors in series.
- Both Units have been designed to process a similar feed, with similar conversion targets.
- Both Units have been designed with very similar Space Rates.

# A Comparison of Two LC-Fining Units and their EB Reactor Reliability



- Unit A has been working very closely with CLG and their catalyst supplier:
  - Several CLG recommended LC-Fining Reactor internal modifications have been performed.
  - They now operate with a dual solid catalyst system.
  - Conversion now exceeds design values.
- Unit A has achieved a 4 year run length on their 1<sup>st</sup> Reactor with one exception since the initial plant start up
  - This exception involved opening all of the LC-Fining Reactors while necessary repairs were carried out elsewhere in the plant during their 3<sup>rd</sup> run cycle.

# EB Reactor Run Lengths A Comparison





# A Comparison of Two LC-Fining Units and their EB Reactor Reliability



- Unit B operates with a single solid catalyst system.
  - Plant modifications are now underway to allow operation of a dual solid catalyst system
- During the first 3 out of 4 unit runs Unit B achieved their target run length of 3+ years.
  - Their first run was cut in half due to an 8+ hr site wide power failure which required all 3 LC-Fining Reactors be cleaned.
  - During run 6, 7, 8 & 9 under grid fouling in the 1<sup>st</sup> LC-Fining Reactor necessitated a SD for cleaning after approx. 1 year of operation.
  - During run 6, 7, 8 & 9 Unit B injected organo-moly into their feed stream.

# A Comparison of Two LC-Fining Units and their EB Reactor Reliability







- CLG has been working closely with two of our licensees who have chose to inject organo-moly into their feed.
- Both of these units have experienced severe under grid fouling in the 1<sup>st</sup> LC-Fining Reactor.
- Extensive analysis of the under grid fouling deposits shows them to contain a high percentage of moly, but little to no alumina.
- A third LC-Fining unit which has processed feed containing naturally occurring organic Moly has also experienced severe under grid fouling in the 1<sup>st</sup> LC-Fining Reactor.

#### **Catalyst Advances Allow Higher Conversion**





#### **Conversion-Sediment Tradeoff Pattern**

#### **Higher Conversion** obtained with:

- Advanced catalyst formulations
- Dual catalyst system
- Optimized operating conditions

# LC-FINING<sup>™</sup> Flow Scheme Solutions increase Residue Hydrocracking Performances



#### **Option:**

- Processing LC-FINING UCO in a Delayed Coker
- Modifying Feedstock such as with an upfront SDA
- Selective conversion of feedstock components
- Converting low value UCO into high value LSFO or FCC feed
- Utilizing advanced micron sized catalysts

#### **Solution Examples:**

- Marathon LC-FINING UCO is processed in a coking unit with overall conversion >88%
- Neste Oil SDA unit on part of LC-FINING feed boosts conversion
- LC-MAX flow scheme to obtain >93% conversion - selected for several new units
- Integration of CLG LC-FINING + RDS technologies
- LC-SLURRY advanced slurry hydrocracking to maximize high value products

#### **CLG LC-FINING™** plus Coking





Better hydrogen utilization

Less and higher-quality coke

Combination results in high conversion (88-90%)

# LC-FINING<sup>™</sup> + Coking Increases Liquid Yields and Produces High-Value Coke





## CLG LC-MAX<sup>®</sup> for High-Conversion and High-Quality products





High conversion with high liquid selectivity in one process

#### **LC-MAX<sup>®</sup> – Process Features**



- 93%+ conversion for difficult crudes
- Fully integrated two-stage process
- Whole VR is hydrocracked in a first reaction stage
- Stage 1 UCO is deasphalted to remove heavy asphaltenes
- DAO is hydrocracked in Stage 2 (much higher rate constant and cleaner operation)
- Hydrogen not wasted in hydroconversion of difficult heavy asphaltenes
- Avoids production of 4-ring HPNA that are very difficult to upgrade

| Processing Urals VR              | LC-<br>FINING | LC-MAX                                   |
|----------------------------------|---------------|------------------------------------------|
| Conversion, %                    | 63            | 88-92                                    |
| Feed Flexibility                 | Good          | Excellent                                |
| Reactor Volume                   | Base          | 0.9 x Base                               |
| Chemical Hydrogen                | Base          | Base x 1.15 for 20%<br>Higher Conversion |
| Catalyst Addition Rate           | Base          | Base x 0.88                              |
| Bottoms Product                  | LSFO          | Coker Feed, Gasifier<br>Feed             |
| Fractionation Section<br>Fouling | Base          | << Base                                  |

### CLG LC-MAX<sup>®</sup>-G for High-Conversion and FCC based refineries





#### High conversion to high-quality FCC feed

# LC-MAX<sup>®</sup> Achieves High Liquid Yields and has Yield Selectivity Options





# CLG LC-LSFO<sup>™</sup> (LC-FINING plus RDS) for Conversion and LSFO production





Great solution for customers wanting conversion plus LSFO

# CLG LC-SLURRY<sup>™</sup> for Full Conversion to High-Quality Products





Full conversion with highest liquid yields and product values

# LC-FINING<sup>™</sup> Liquid Yields Increase Significantly with Flow Scheme and Catalyst Advances





# **Residue Hydrocracking Options Case Study**



#### Existing refinery basis:

- ▶ 300,000 BPD,
- Arab light crude
- VGO HC, FCC, and visbreaking conversion units
- Produces transportation fuels and HSFO

#### Evaluated impact and benefit of:

- Residue hydrocracking alternates
- Aromatics complex
  - make Para-Xylene
- Steam cracker
  - make Ethylene and derivatives







- as if at distressed prices
- Availability of Natural Gas by pipeline
- Gasoline desired over distillates
- Coke/Pitch assumed low in value

| Feed stocks              | <u>\$/MT</u> |
|--------------------------|--------------|
| Arab Light Crude, \$/bbl | 70.8         |
| Natural Gas              | 158          |
| (\$/MSCF)                | (3.50)       |
| Methanol                 | 365          |

| <u>Product</u>         | <u>\$/MT</u> |
|------------------------|--------------|
| LPG                    | 665          |
| Finished Butadiene     | 1079         |
| Finished Ethylene      | 1296         |
| Propylene PG           | 1021         |
| Benzene                | 798          |
| Para Xylene            | 923          |
| Euro V 95 RON Gasoline | 847          |
| Jet A1                 | 757          |
| Euro V Diesel          | 794_         |
| HSFO                   | 200          |
| LSFO                   | 692          |
| Coke/Pitch             | 50           |
| Sulfur                 | 70           |

# **Residue Conversion Addition Impact on Refinery Yields**





## **Residue Conversion Addition Economic Benefits**





# LC-LSFO<sup>™</sup> and Petrochemical Options Impact on Refinery Yields





# LC-LSFO<sup>™</sup> and Petrochemical Options Economic Benefits







Residue Hydrocracking is Now the Preferred Residue Upgrading Process

Highest conversion and liquid yields

Very reliable process

**Catalyst advances** 

Flow scheme integrated solutions Meets future product requirements