Addressing Increased Fouling Rates in Delayed Coker Heaters – A Case Study Identifying the Factors Behind the Increased Fouling Rates

Michael R. Kimbrell, P.E.
2019 Refcomm Galveston
In late 2018, Becht Engineering was asked to assist in evaluating rapid fouling in a Delayed Coker heater.

Heater run lengths had been as long as 15 months between decoking the furnace.
- Recent runs had been only 2 months in duration.

Focus of initial request was heater design and burner performance.
Initial investigation

- Unit operation was typically at 60% of heater design throughput
- Heater was replaced 10 years prior assuming purchased feed would increase unit feed rate.
- Crude slate processed at the site is a light, sweet feed slate that typically has only 10% by volume vacuum bottoms
- Lots of infrared thermography information available. Last 4 tubes are larger diameter than the rest and the skin temperature of those tubes sets the heater run length
- Coil outlet thermowells and transfer line in general have a history of excessive coke deposition
 - Outlet thermowells have coked up previously and read a lower temperature that has resulted in the heater increasing the fired duty
Typical thermal scan result

• Bottom four tubes are hotter than the other tubes in the heater
• Tube hangers are all about the same temperature.
• No obvious hot spots on the refractory which would indicate a non-uniform heat flux
• Concluded that problem was not fire side related
Potential process side causes of fouling

- Excessive heat flux
- Low velocities in the heater coils resulting in long residence times
- Inorganic contaminants
 - Sodium
 - Other metals
- High coke precursor concentrations
 - High microcarbon residue (MCR) values
 - Precipitated asphaltenes
Typical Delayed Coker Heater Design Parameters and Preliminary Findings

• Design Parameters
 – Average radiant heat flux
 • Less than 9000 BTU/hr-ft² for single fired heater
 • Less than 13000 BTU/hr-ft² for double fired heater
 – Mass flux greater than 350 lb/ft²·sec
 – Cold oil velocity greater than 6 ft/sec for conventional feeds
 – Less than 30 sec residence time above 800°F
 – Transfer line minimum velocity
 • $V_{min} = \frac{60}{\sqrt{\rho_{mix}}}$

• Preliminary findings
 – Mass flux of 300 lb/ft²·sec in small diameter tubes
 – Mass flux of 170 lb/ft²·sec in larger diameter tubes
 – Cold oil velocity of 4.6 ft/sec in smaller tubes, 2.6 ft/sec in larger tubes
 – Transfer line velocity was low in some sections
Coil configuration

- Each pass had the tube diameter increase for the last four tubes to reduce the pressure drop through the coil.
- Existing heater coil had the ability to add velocity steam to the first of the larger diameter tubes.
- No velocity steam had been connected to this injection point since initial construction.
Heater detailed analysis – process side

- DC-SIM as part of Petro-SIM software from KBC was used to model the heater
- A detailed tube by tube evaluation was done on the current heater coil configuration at the typical feed rate. Analysis showed:
 - Average radiant heat flux was low at 7200 BTU/hr-ft²
 - Mixed phase velocity at coil exit was low at 80 ft/sec
 - Residence time above 800°F was 35 sec, so longer than desired
- Typical feed properties would allow heater to run more than 6 months between heater de coke
- Low velocities and mass flux in large tubes explained high tube metal temps in those tubes
- Short runs were not explained by design or operational issues
Coke properties

- Coke was extremely hard, dense, non-porous
- Larger tubes were cut out and replaced as replacing was faster than pigging due to the coke hardness
- Coke analysis showed extremely high concentrations of iron, calcium, sodium
- During low fouling rates the iron, calcium and sodium concentrations in coke are still high.
- Sodium in VTB is less than 15 ppm typically with occasional peaks to 30 ppm.
Crude slate impact

- Recent very high fouling rate was coincident with receipt of “heavy” crude into overall crude slate at a relatively low percentage
- Desalter performance showed evidence of increased emulsion layer thickness
- Coker heater fouling started shortly after this event
Conclusions

• The very rapid fouling in the last run and shorter prior runs was the result of asphaltene precipitation in the Coker feed.

• Coker feed is very paraffinic with Watson K-factor of 12.0 and higher.

• Any crude with higher than average asphaltene content will have the asphaltenes precipitate due to the paraffinicity of the feed.
 – The separated asphaltenes coke very rapidly.
 – The coke formed from asphaltenes is very hard and non-porous, similar to what was found.

• Asphaltene precipitation from uncontrolled crude oil blending coupled with low velocities in Coker heater are the cause of these very short runs.
Visual inspection for Asphaltene precipitation

- Visual inspection of crude oil under a microscope will show asphaltene precipitation.
- Magnification of 100x is typically sufficient to show precipitation. Severe cases do not require any magnification.
 - Photo is an example of crude oil with precipitated asphaltenes and not from this site.
DC-SIM modeled alternate configurations

- Alternate coil configurations were evaluated to answer the following questions:
 - Could the larger tubes be replaced with same size tubes as rest of heater?
 - Could the larger tubes be removed completely?
 - Could more velocity steam prevent the fouling?
DC-SIM modeled alternate configurations

- Results of modeling showed adding velocity steam to first of the larger tubes and maintaining the existing coil configuration had the fewest objections
Model results

• Larger diameter tubes were necessary to limit heater pressure drop at end of run

• Removing large diameter tubes caused average radiant heat flux to be 7900 BTU/hr-ft2 at the reduced throughput. In tube velocity was high and would limit future capacity. Additionally, that modification did not resolve low velocity in transfer line

• Velocity steam was required in the first of the larger diameter tubes to limit fouling. This also increased velocity in transfer line
 – Checked velocity in coke drum to prevent coke fines carry over
 – Preliminary check on C-factor in fractionator flash zone
 – Checked on fractionator sour water pump capability
Path forward

• Site implemented crude oil testing to manage compatibility
• Velocity steam was added to first of the large diameter tubes on each pass

• These modifications have been in place since Jan 2019 with good results