Resid Hydrocracking reactor bed density
Units that typically use Radiometric
- Desalters
- Alkylation
- Tower Bottoms
- Delayed Coker
- Resid Hydrocrackers
Experience

▪ Experience with
 ▪ Axens – H-Oil (Shenua, Bourgas, Sinopec, PKN, etc)
 ▪ CLG – LC-Fining (Eni/AGIP)
 ▪ Eni’s – EST (Sannazzaro)
 ▪ KBR – VCC (Taif)
▪ 14 out of the 25 operating units
 ▪ 5 of the last 7 projects
Vessels with Radiometric

▪ Reactors
▪ Separators
▪ Catalyst Handling/Transfer
▪ Towers/Columns
▪ Using Drilled Bore
 ▪ Reactors
 ▪ Liquid/Vapor Separators
 ▪ High Temperature and High Pressure
 ▪ Catalyst Transfer Vessels
▪ Using Drilled Bore
 ▪ Reactors
 ▪ Liquid/Vapor Separators
 ▪ High Temperature and High Pressure
 ▪ Catalyst Transfer Vessels
Parameters
- Parameters
 - Depth of Bore hole (remaining wall thickness)
Parameters

- Depth of Bore hole (remaining wall thickness)
- Process Path (distance from wall to source well)
Parameters

- Depth of Bore hole (remaining wall thickness)
- Process Path (distance from wall to source well)
- Max Density reading
- **Parameters**
 - Depth of Bore hole (remaining wall thickness)
 - Process Path (distance from wall to source well)
 - Max Density reading
Typical operating densities

- Bed Density
 - 0-65kg/m³ – Vapor
 - 65- 500kg/m³ – Foam
 - 500-950 kg/m³ – hydrocarbon liquid
 - 800-1200kg/m³ – hydrocarbon liquid and catalyst (ebulliated/suspended)
 - 1200-1400+kg/m³ – Slumped bed
Vapor 0-65kg/m³
Foam 65-500kg/m3
Oil 500-950kg/m³
Oil/Catalyst 950-1600kg/m3
- Level Control
 - Too Low
 - Slumping of the bed (bed compression)
 - Poor distribution of catalyst
 - Can create “hot spots”
 - Too High
 - Catalyst carryover
 - Pump damage
 - Long repair time
▪ Advance Controls
 ▪ Vapor/Solids Holdup Calculations
 ▪ Increased Unit Performance
 ▪ Increased Unit Reliability
 ▪ Needs Better Resolution
Making Density Measurement
Parameters - Fixed

- Distance from Detector to Vessel wall
- Insulation Thickness
- Process Path
- Source well thickness
- Distance from source to well wall
Making Density Measurement

Parameters - Variable

- Process Density
 - Calculate Absorption

\[\Delta I = e^{-\mu \Delta \rho t} \]

\(\mu \) = Absorption Coefficient
\(\rho \) = Material Density
\(t \) = Material Thickness
Making Density Measurement

- Density span – 0-1400kg/m³
- Source Size – 1000mCi Cs-137
- Process Path – 800mm

![Graph showing density measurements](chart.png)
Making Density Measurement

- Density span – 0-1400kg/m³
- Source Size – 1000mCi Cs-137
- Process Path – 700mm
Making Density Measurement

- Density span – 0-1400kg/m3
- Source Size – 1000mCi Cs-137
- Process Path – 700mm
Filtering
Filtering

![Diagram showing raw signal and filtered signal over time](image)
Filtering
Making Density Measurement

- Density span – 0-1400kg/m³
- Source Size – 1000mCi Cs-137
- Process Path – 600mm
Making Density Measurement

- Density span – 0-1400kg/m³
- Source Size – 1000mCi Cs-137
- Process Path – 600mm
Making Density Measurement

- Density span – 0-1400kg/m3
- Source Size – 500mCi Cs-137
- Process Path – 600mm

![Graph showing density measurement resolution](image-url)

0-1400kg/m3 600mm 60sec TC
Parameters effecting density measurement

- Process path (fixed)
- Density range (fixed)
- Size of Source
 - Increased source to increase resolution/decrease time constant
- Increase Time constant
 - Increased Time constant to increase resolution, but delays reading
- Detector Sensitivity
 - Higher sensitivity is the same as increasing the source size.
 - Increased Resolution/decrease time constant/reduce source size or keep existing sources
Thank you for your attention!!!!

David Williams
Global Business Development Manager
Berthold Technologies
+1 865 604 4424
david.williams@berthold.com