Lessons Learned from Recent Startup

RefComm Rotterdam 2019
Agenda

- Who we are?
- Where we are?
- Radiological Issues
 - Mounting Recommendations
 - Locations
- Operational Issues
Berthold Introduction
... and where we came from

- **1949**:
 - Prof. Dr. Rudolf Berthold founded the company “Laboratorium Prof. Dr. Rudolf Berthold”

- **1955**:
 - First density systems supplied

- **1959**:
 - Use of Rod shaped sources for highly accurate level measurements

- **1960**
 - Development of the first industrial process measurement based on γ-Transmission (Level Switch - BASF)

- **1973**
 - High-sensitive scintillators replaced Geiger-Müller technology

- **1989**
 - Re-privatization renamed Berthold Technologies

- **1995**
 - Acquisition by EG&G

- **2000**
 - SuperSENS most sensitive detector

- **2003**
 - SIL2/3 certified detectors

- **2014**
Refinery Applications
Where we are in Delayed Coking?
Coke Drum Levels
The Berthold Solution - Typical Arrangement

- Continuous Level measurement
 - 8m – 30m/26 – 98 ft
 - TowerSENS detector, 8m / 26 ft
 - Usually 2 or 3 fan beam point sources
- Gas Property Compensation
 - Located at or slightly above 100 % of cont. Level span is recommended
 - 1 or 2 further point within the continuous level span (optional)
- Auto-SENS and Outage available
Important Aspects
TowerSENS – One detector does it all

- Patented temperature and aging compensation
 - Gain Control
- No recalibration needed
- XIP (X-Ray Interference Protection)
- Scintillators:
 - Solid scintillation crystals
 - Diameter of 2” / 50 mm
- 2” Photomultiplier
 - About 10 times higher count rate
Installation Example
Radiological Issue
Radiological Issue
High Radiation Fields

10µSv/hr
(1mR/hr)

Limit is 3µSv/hr (0.3mR/hr) @ 300mm
Radiological Issue
Why?
Radiological Issue

Solution!
Radiological Issue

Results

3μSv/hr
(0.3mR/hr)
Radiological Issue
Added protection
Transforming science into solutions
- Radiation over the length of the detector
- Detector average the strength of radiation over the entire length
- No spatial Resolution
Top Point Detector
- Located as high as possible
- Uses
 - Gas Property Compensation
 - High Level to shut off water
 - Monitor for Particulate Matter Carryover
 - Monitor Coke build up for dome clean outs
Gas Properties Compensation „GPC“
Compensate the gas density changes

- Gas properties change during the process
- High gas pressure/density results in more absorption
- Without, level will lower than actual after switching
- The solution:
 - Measuring the gas phase by using the high level switch
 - Input gas phase to the level detector
 - Correction takes place in the level detector
 - Level is recalculated according to gas conditions during measurement
Transforming science into solutions
Common Questions
Non-Destructive Testing – Radiography

- Radioactive source is used
 - Co-60 gamma energy ≈ 1.25MeV
 - 1.8 – 3.7 TBq (50 – 100 Ci)
 - Ir-192 gamma energy ≈ 0.45MeV
 - 3.7 TBq (100 Ci)
 - Se-75 gamma energy ≈ 0.32MeV
 - 1.48 TBq (40 Ci)
Non-Destructive Testing – Radiography

Typical 3m level

- Calibration on 2m level device
 - Average field of 0.5µSv/hr
 - Detector sensitivity 10000 cps per meter of length per 1µSv/hr
 - 2m * 10000cps * 0.5µSv/hr = 10000 cps
Radiography
Non-Destructive Testing – Radiography

Calculating Radiation Field

- To calculate the field of a point source

\[I = \frac{\Gamma \ast A}{d^2} \]

- Where:
 - \(\Gamma \) = gamma constant (\(\mu Sv h^{-1} MBq^{-1} \))
 - \(A \) = Activity of Source in MBq
 - \(d \) = distance

\[d = \sqrt{\frac{\Gamma \ast A}{I}} \]
Non-Destructive Testing – Radiography

Calculating Radiation Field

\[d = \sqrt{\frac{\Gamma \times A}{I}} \]

- For Co-60
 - \(\Gamma = 0.369 \ \mu Sv h^{-1} \ \text{MBq}^{-1} \)
 - \(A = 3.7 \ \text{TBq} \text{ or } 370000 \ \text{MBq} (100 \text{ Ci}) \)
 - \(I = 0.5 \mu Sv/\text{hr} \)
 - \(d = 1652 \text{ meters} \)
 - \(d = 2337 \text{ meters for a field of } 0.25 \mu Sv/\text{hr} \)
Non-Destructive Testing – Radiography

Calculating Radiation Field

\[d = \sqrt{\frac{\Gamma \times A}{I}} \]

- For Ir-192
- \(\Gamma = 0.163 \, \mu Sv h^{-1} \, MBq^{-1} \)
- \(A = 3.7 \, TBq \) or 3700000 MBq (100 Ci)
- \(I = 0.5 \mu Sv/hr \)
- \(d = 1098 \, meters \)
- \(d = 1553 \, meters \) for a field of 0.25\(\mu Sv/hr \)
Transforming science into solutions
Non-Destructive Testing – Radiography

- Radioactive source is used
 - Co-60 gamma energy ≈ 1.25MeV
 - 3.7 TBq (100 Ci) has a field of 0.5μSv/hr (.05mR/hr) at 1652 meters
 - Ir-192 gamma energy ≈ 0.45MeV
 - 3.7 TBq (100 Ci) has a field of 0.5μSv/hr (.05mR/hr) at 320 meters
 - Se-75 gamma energy ≈ 0.32MeV
 - 1.48 TBq (40 Ci) has a field of 0.5μSv/hr (.05mR/hr) at 242 meters
Non-Destructive Testing – Radiography

Typical 2m level

- Calibration on 2m level device
 - Average field of 0.5µSv/hr
 - Detector sensitivity 10000 cps per meter of length per 1µSv/hr
 - $2m \times 10000\text{cps} \times 0.5\mu\text{Sv/hr} = 10000\text{cps}$
- Level @ 50% $\approx 5000\text{cps}$
- 10000cps from NDT source, drives PV to -50% (15000cps, 10000cps from NDT, 5000cps from installed source)
Non-Destructive Testing – Radiography

Shielding

- Radioactive source is used
 - Co-60 gamma energy ≈ 1.25MeV
 - HVL of lead = 12.5mm (0.49”)
 - Ir-192 gamma energy ≈ 0.45MeV
 - HVL of lead = 4.8mm (0.19”)
Non-Destructive Testing – Radiography

Calculating Shielding reduction

- To calculate the reduction

\[I = I_o e^{-\mu \rho t} \]

- Where:
 - \(I \) = field after shielding
 - \(I_o \) = Initial field strength
 - \(\mu \) = attenuation coefficient
 - \(\rho \) = density of material
 - \(t \) = thickness of material
Non-Destructive Testing – Radiography

Calculating Shielding reduction

- To calculate the reduction

\[I = I_0 e^{-\mu \rho t} \]

- Where:

 - \(I \) = field after shielding
 - \(I_0 \) = Initial field strength
 - \(\mu \) = .0493 cm²/g
 - \(\rho \) = 11.25 g/cm³
 - \(t \) = 1.25 cm

- Reduction is 50%, if the initial field was 0.5 µSv/hr then the resulting field is 0.25 µSv/hr
Non-Destructive Testing – Radiography

Calculating Shielding reduction

- To calculate the reduction

\[I = I_0 e^{-\mu \rho t} \]

- Reduction is 50%, if the initial field was 0.5 µSv/hr then the resulting field is 0.25µSv/hr
- 1.25cm = 50% (still getting 5000cps) = 50% of span
- 2.5cm = 75% (still getting 2500cps) = 25% of span
- 3.75cm = 87.5% (still getting 1250cps) = 12.5% of span
- 5cm = 93.75% (still getting 625 cps) = 6.25% of span
Transforming science into solutions
Thank you for your attention!!!!

David Williams
Global Business Development Manager
Berthold Technologies
+1 865 604 4424
david.williams@berthold.com