Duiker Combustion Engineers

+31 (0)174 282 700 www.duiker.com

SRU Thermal Reactor Chemistry & Design

Roelof ten Hooven Area Sales Manager

Company Profile

- Engineering company specialized in process combustion equipment
- Founded in 1919
- ± 75 employees

Goals of the SRU

- Recover elemental sulfur (S₂₋₈) from all sulfur species in the feed gases (AAG and/or SWSAG).
- Destruct other harmful components of the feed gases.
- Limit the formation of new harmful substances.

Basically, comply with emissions regulations!

Typical Sulfur Recovery Unit

Sulfur Recovery Unit Thermal Stage

Thermal Stage Objectives

- 65-70% Sulfur Recovery
- Ammonia Destruction
- Hydrocarbon Destruction
- By-product Conversion

Sulfur formation in the Reaction Furnace

Claus reaction: Acid gas 2H2S + SO2 1/2S2 + 2H2OHydrogenSulfurSulfurSulfur sulfide dioxide

Sulfur formation in the Reaction Furnace

Ammonia destruction

 $NH_3 + \frac{3}{4}O_2 \longrightarrow \frac{1}{2}N_2 + \frac{1}{2}H_2O$

Ammonia destruction

$$NH_3 + \frac{3}{4}O_2 \longrightarrow \frac{1}{2}N_2 + \frac{1}{2}H_2O$$

Ammonia destruction

Remaining NH₃ at MRF outlet:

- Expected < 20 ppm
- Guaranteed < 100 ppm

Provided:

- MRF operating temperature > 1300°C (2372°F)
- Residence time > 1 sec

Hydrocarbon destruction

 $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$

SRU Combustion Basics

The degree of combustion depends on 3 factors, the three **T**'s of combustion:

- **T**emperature
- (Residence) Time
- Turbulence

SRU Temperature

The overall temperature in the main reaction furnace depends on:

- Chemical reactions
 - Heat release and absorption
 - The stoichiometry
- Design conditions (set by process licensor)
 - Pre-heating of the combustion air / acid gas
 - Oxygen enrichment
 - Co-firing of fuel gas
 - Bypassing part of the amine acid gas

SRU Residence Time

Minimum: determined by reaction kinetics

Longer: better destruction of impurities.

SRU Turbulence

The flow pattern determines the shape of the flame, the degree of mixing as well as the flame stability. Mixing is achieved through:

- Burner geometry
 - E.g. physical restrictions, swirlers, constrictions, etc.
- Pressure drop
 - Higher pressure drop = more energy!
- Design principle
 - Pre-mixing vs. diffusion flame principle

Resulting Burner Requirements

- Intense mixing of acid gas and oxygen
- Recirculation of flue gas

LMV Main Burner

LMV Main Burner

LMV Burner Axial Velocity

Contours of Axial Velocity (m/s) Jun 17, 2011 ANSYS FLUENT 12.1 (axi, swirl, pbns, spe, RSM)

Turbulent combustion

