Octane Boost and Capacity Increase for Hydrotreated Naphtha

ExoS[™] - Extraction Desulfurization Technology

REFCOMM Galveston 2019

Brant Aggus Refining Technologist INVISTA Performance Technologies

KIKOCH-GLITSCH.

ExoS[™] - Sulfur Extraction Technology for Mid-Cut Naphtha

- A great investment for meeting 10 ppm sulfur limits in the blending pool
- Generates an olefin rich C6-C7 raffinate with less than 10 ppm Sulfur that bypasses the FCC naphtha hydrotreater for direct blending
- Value Drivers:
 - Can reduce full range FCC Naphtha RON loss to <1
 - *Reduces hydrotreater feed flow by up to 40% and H2 consumption by up to 50%*
 - Reduces or eliminates light FCC naphtha treatment and heavy naphtha posttreatment
 - ExoS[™] can treat C5 naphtha
 - Olefin bypass of the hydrotreater reduces mercaptan revision
 - For units already taking a mid-cut FCC napththa split pre-hydrotreater, ExoS[™] eliminates the need to over-treat heavy cut to blend down total sulfur
- Commercially proven success 8 units in operation and 7 in design
 - Can be installed with a new hydrotreater to reduce the size, CAPEX and OPEX of the hydrotreater
 - Can be installed as a revamp to save Octane and free up hydrotreater capacity

TOPICS

DEVELOPMENT AND BASIS

EXOS TECHNOLOGY OVERVIEW

BENEFITS OVERVIEW AND EXAMPLE

COMMERCIAL EXAMPLES AND SUMMARY

INVISTA / KOCH-GLITSCH PARTNERSHIP

ExoS™ DEVELOPMENT AND TECHNOLOGY BASIS

How Best to Desulfurize FCC Gasoline?

Desulfurization vs. Olefin Recovery

Lose olefins to hydrogenation? Or..... Find a way to recover them. Oil product optimization
Fuel upgrading to <10 ppm S

Traditional FCC Naphtha Sulfur Treating.....

(Fundamental research findings)

BASIS

Typical FCC Gasoline Analysis

С	nP	iP	0	Ν	Α	Total	wt%	Olefin wt%
4	0.1	/	0.6	/	/	0.7	87.5	1.6
5	1.2	7.8	18.0	/	/	26.9	66.8	44.2
6	1.1	5.9	11.9	2.0	0.8	21.6	55.0	29.3
7	0.9	2.2	4.3	3.2	3.7	14.3	30.3	10.7
8	0.4	2.7	3.6	1.8	6.4	14.9	24.2	8.9
9	0.3	1.6	1.4	1.3	7.8	12.3	11.2	3.4
10	0.2	0.7	0.7	0.2	4.0	5.7	11.7	1.5
11	0.3	1.5	0.1	/	1.0	3.0	5.4	0.4
Total	4.4	22.2	40.6	8.6	23.6	99.4	/	100.0
								si di seconda di second

Mercaptans are Treated with Existing Technology - • C5 Olefins : 40~50 wt%

VISTA[™]

But what about these? • C6-C7 Olefins: ~40 wt%

(Fundamental research findings)

BASIS

Typical Sulfides Distribution in FCC gasoline

Component	BP, °F	ppmw
cos	-58	0.9
C2SH	95	5
DMDS	99	2.5
CS ₂	117	1.4
C3Thiol	133-154	9.2
C2H6S	149	0.3
C4SH	149-208	2.2
Thiophene	183	113
C2H6S2	230	0.8
IC5SH	243	0.4
Methylthiophene	237	241

Component	BP, °F	ppmw
Tetrahydrothiphn.	246	25.4
Ethylthiophene	271	40.5
Dimethylthiophene	273	205
Hexathiol	304	19.6
C Hexasulfide	295	19.8
Trithiophene	316	180
Octathiol	390	11.2
C Octasulfide	365	4.4
Tetrathiophene	358	108
Total		1000

- Thiophenic Sulfur: 91%
- Distributed in: 175~275 °F Range

(Fundamental research findings)

BASIS

Solubility Advantage

With molecular properties of PONAS, mid cut naphtha feed is separated into PNO rich and AS rich oil, with S rich oil sent to Hydrotreating. Most of olefin is not sent to HDS unit, so that olefin is *not saturated*.

НС	Benzene	Toluene	Cyclohexane	Every other HC
Rel. Solubility	8.0	4.8	2.0	<1.0
Sulfide	Thiophene	Methyl- Thiophene	Thioether	Mercaptan
Rel. Solubility	10.5	5.2	5.0	4.7

ExoS[™] Technology Overview

4-3-2 of ExoS Technology

- 1. Light olefin
- 2. Process water
- 3. Solvent

Olefin separation
Solvent circulation

Simplified Flow Scheme for ExoS Process

Benefits Overview and Example

Hoekstra multi-client group has done field tests on 11 different posttreaters

Hoekstra model estimates ExoS[™] will save 3-4 RON on these units

Commercial Example							nP	iP	0	N	A	sum		
							5	1.4	1.6	7.2	0.5	0	10.7	
Kannale					6	5.8	14.0	33.7	7.5	0	61.0			
MCN Feed						7	3.4	9.9	7.6	6.8	0	27.7		
	(•		01 1012	in ree r	aprici	ia)		8	0	0.3	0.1	0.2	0	0.6
	and the second				Extract		10.6	25.8	48.6	15.0	0	100.0		
				S			8.0 p	pmw		·				
	nP	iP	0	N	A	sum								
5	1.2	1.3	6.1	0.4	0.0	9.0		nP	iP	0	Ν	J	Α	sum
6	4.9	11.7	29.5	6.5	6.7	59.2	5	0	0	0.8	3 ()	0	0.8
7	3.1	8.4	7.3	6.3	2.5	27.6	6	0.2	0.1	8.8	3 1.	6 3	39.7	50.4
8	0.1	0.5	0.5	0.5	0.5	2.0	7	1.4	1.2	6.1	L 3.	6 1	4.7	27.0
9	0.1	0.2	0.3	0.1	0.6	1.3	8	0.7	1.3	2.3	3 1.	8	3.0	9.1
10	0.1	0.1	0.2	0.1	0.4	0.8	9	0.6	1.0	1.8	3 0.	8	3.7	7.9
	94	22.2	43 9	13 9	10 7	100.0	10	0.5	0.8	0.9	0.	4	2.2	4.8
C	5.7	<i>LL.L</i>	200 0	10.0	10.7	100.0		3.4	4.4	20.	7 8.	2 6	3.3	100.0
3			380.0	hhum			S			221	2.4 pp	mw		

(All values are wt%)

INVISTA[®]

Commercial Example, 6.8 MBPD Mid-Cut Naphtha

	Feed	Raffinate	Extract
Flow rate, Mlb/hr	70.6	58.7	11.9
Percentage, wt%	100.0	83.1	16.9
Olefin content, wt%	43.9	48.6	20.7
Olefin flow rate, Mlb/hr	30.9	28.5	2.4
Olefin split, %	100.0	92.1	7.9
Sulfur content, ppmw	380.0	8.0	2212.4
Elemental S split, %	100.0	1.8	98.2

- Olefin Recovery: 92.0%
- Sulfur Recovery: 98.2%

Utility Consumption

		Consumption (/ton feed)			
		unit	Cons		
1	Cooling water	ton	14.7		
2	Power	Kw∙h	10.5		
3	300 psig steam	ton	0.3		
4	Condensate	ton	-0.3		
5	N2	scf	64.0		
6	Instrument air	scf	64.0		

Low energy consumption, low cost

Key Advantages , ExoS[™] vs Hydrotreating Alone

	ExoS	HDS Alone
Product S	<10 ppmw	<10 ppmw
Ron Loss (A)	0.5-1.5 (worth \$31 USD/t)	2.0-4.0 (\$0 benefit-base)
H2 Consumption	1/3-1/2	1 (base)
Selective Hydrogenation Ratio	45 wt%	80%
Product Loss	0.2-0.4 wt% (worth \$6 USD/t)	0.8 wt% (\$0 benefit-base)
Capex (B)	45MM USD	45 MM USD
Орех	\$17 USD/t	\$19 USD/t
\$ Benefit	\$39 USD/t	\$0 - base

- (A) Based on gasoline spec w/ <10 ppm S requirement.
- (B) Based on 1000 kTPA plant capacity, built in China.

Environmental Benefits

No wastes

Solvent consumption: 1lb/100Mlb gasoline

Can be coupled with existing hydrotreating tech

 \sim 50% FCC gasoline to be hydrotreated with ExoS vs \sim 80% FCC gasoline to be hydrotreated without

Process can drop into an existing plant

Can revamp aromatics extraction units

Commercial Examples and Summary

Client: A Chinese refinery

Capacity: 600 kta (FCC Gasoline Upgrading ExoS Project)

Start up: Jan. 2015

RON loss: < 1.0 (vs original 4.0) Sulfur content: < 5 ppm

Client: A PetroChina Refinery

Capacity: 350 kta

Start up: Oct. 2016

RON loss saving: ~4 Sulfur content: < 10 ppm

Client: A ChemChina Refinery

Capacity: 1,100 kta

Start up: Nov. 2016

RON loss: < 1.5 Sulfur content: < 5 ppm

INVISTA / Koch-Glitsch Partnership

Commodity Trading	Minerals			
Electronic Components	Polymers and Fibers (IPT)			
Energy	Ranching			
Fertilizers	Refining, Chemicals and Biofuels (FHR)			
Forest and Consumer Products	Glass			
Process and Pollution Control Equipment and Technologies (KG-JZ)				

KOCH-GLITSCH.

**Koch revenues fluctuate with the price of commodities. They have been estimated by Forbes as high as \$115 billion.

Georgia Pacific

INVISTA"

molex

GUARDIAN

IPT – KG Partnership

IPT is INVISTA's technology transfer business with more than 40 years in continuous licensing

Licensed more than 100 license projects for PTA, Polyester, BDO, PTMEG and Nylon 66 since joining KII in 2004

Supporting technology development, commercialization and licensing within KII since 2013

Entry into the refining space spawned by collaborations with KII Affiliates ... Flint Hills Resources and Koch-Glitsch

IPT-KG Partnership to Offer Exos[™], DTL[™], IsoA[™] and other Refining Technologies to the Market

Summary

- ➤ Exos[™] is an advantaged option for meeting 10 ppmw Tier 3 Sulfur Limits
 - Generates an olefin rich C6-C7 raffinate with less than 10 ppm Sulfur
 - Reduces Octane loss to <1</p>
 - Reduces hydrotreater feed flow by up to 40%, and
 - Reduces hydrotreater H2 consumption by up to 50%
- We'd appreciate the opportunity to provide a detailed proposal to meet your specific needs
- > Questions?

THANK YOU

Mike Massa Licensing Director INVISTA Performance Technologies Telephone: +1 (615) 424 6021 E-mail: Michael.L.Massa@INVISTA.com Brant Aggus Refining Technologist INVISTA Performance Technologies Telephone: +1 (361) 215 5719 E-mail: Brant.L.Aggus@INVISTA.com

Alex Traubert Senior Process Engineer INVISTA Performance Technologies Telephone: +1 (361) 500 8077 E-mail: Alex.Traubert@INVISTA.com

DISCLAIMER

NOTICE: The data and material in this presentation are being provided for informational purposes only. INVISTA does not provide any representation or warranty with respect to any such information, the standards used or applied in deriving such data and material, the statistical significance of such data and material or the reliability, accuracy or fitness of such data and material for any purpose whatsoever. All such data and material are the property of INVISTA and nothing herein shall be construed as authorization or license to use, print or distribute any such data or material. INVISTA disclaims any liability whatsoever with respect to the use of any of the data or material contained herein. Nothing in this presentation should be construed as a binding offer to provide any license, product or service.

All trademarks used herein are the property of their respective owner

