ENRICH YOUR SRU! HOW TO INCREASE SULPHUR PROCESSING CAPACITY OF AN EXISTING PLANT

Armando Costantini
Sulphur Recovery Technical Manager

Alessandro Buonomini
Deputy Tech., Process and HSE Head of Dept.
ENRICH YOUR SRU! HOW TO INCREASE SULPHUR PROCESSING CAPACITY OF AN EXISTING PLANT

SUMMARY

1. Introduction
2. Design requirements
3. Project steps
4. Feasibility Study
5. In field Test
6. Revamping activities
7. Commissioning and start up
8. Conclusion
INTRODUCTION

❑ CASE STUDY
 Revamping of SRU Unit designed by KT (2 Claus + 1 TGT) and started-up in 2009

❑ SCOPE OF WORK
 Perform the best revamping of the plant configuration combined with the best delivery time for a long standing Client in Europe

❑ PLANT CAPACITY
 Current capacity 150 t/d of sulphur production; after revamping 236 t/d.

❑ A NEW APPROACH FOR REVAMPING
 The sequence of activities followed in this project, which involved an actual field trial of the final revamping before the design finalization, represents a very unique and innovative manner of developing such revamping projects.
Considering an increase of 150% on Sulphur production, the SRUs Facility shall be in compliance with the following main requirements:

- Minimum impact on existing plant
- Minimum impact on the regular production
- Sulphur Recovery Efficiency
- H2S emissions at stack
ENRICH YOUR SRU! HOW TO INCREASE SULPHUR PROCESSING CAPACITY OF AN EXISTING PLANT

DESIGN REQUIREMENT

Enrichment with oxygen

- Amine
- Acid Gas
- SWS
- Acid Gas
- Combustion
- Air
- OXYGEN
- Fuel Gas
- Combustion Air
- Hydrogen
- Flue Gas
- Sour
- Water
- Liquid
- Sulphur
New approach to revamp a plant

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTIVITIES</th>
<th>KT RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Feasibility Study (2013)</td>
<td>• Assessment on the operation of the SRU in order to reconcile the field data
 • Investigation on the revamping options</td>
<td>• Finding of the “best” solution for capacity increase
 • Definition of the maximum capacity for the given SRU</td>
</tr>
<tr>
<td>2. In field test (2014)</td>
<td>• Reproduction of the conditions foreseen after revamping
 • Observation of plant behaviour during test</td>
<td>• Confirmation of the feasibility results
 • Understanding of the critical issues</td>
</tr>
<tr>
<td>3. Design and Engineering</td>
<td>• Design based on the collected data and observation of plant behaviour</td>
<td>• Intervention on the real bottlenecks</td>
</tr>
</tbody>
</table>
FIRST STEP - FEASIBILITY STUDY

Case studied: 25% more of sulphur production (AAG and SWS increased both)

Parameters confirmed with increased capacity:

- Hydraulics (5% more of Claus process gas comparing to original case)
- Ammonia destruction despite the lower residence time in thermal reactor
- Heating systems
- Degassing system

Modifications proposed with increased capacity:

- Burner (no impact on material)
- Substitution of pyrometer with a thermocouple on Thermal Reactor
- WHB tubesheet: new type of ferrules
- Quench circuit: addition of trim cooler on quench water circuit
FIRST STEP - FEASIBILITY STUDY

Results

Impact on Burner and Thermal Reactor: higher AAG flowrate and temperature in furnace

Impact on quench circuit due to higher amount of water and higher tail gas temperature

No impact on claus section: Claus efficiency higher despite the increase of flowrate and catalyst moderate deactivation.

No impact on feed/effluent exchanger: heating gas from reduction reactor is hotter. Tail gas flowrate is lower.
SECOND STEP - IN FIELD TEST

In field Case: 50% more of sulphur production and 10% more of process gas (AAG increased only)

Critical parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Enriched air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claus Furnace system</td>
<td>Single zone</td>
</tr>
<tr>
<td>Max. Claus Furnace adiabatic flame temperature, °C</td>
<td>1500</td>
</tr>
<tr>
<td>Residence time</td>
<td>>0.9 sec</td>
</tr>
<tr>
<td>Claus Furnace WHB mass velocity, kg/m²s</td>
<td>16.5</td>
</tr>
<tr>
<td>Steam produced from WHB, kg/h</td>
<td>13000</td>
</tr>
<tr>
<td>1<sup>st</sup> Converter inlet temperature, °C</td>
<td>220</td>
</tr>
<tr>
<td>1<sup>st</sup> Converter outlet temperature, °C</td>
<td>300</td>
</tr>
<tr>
<td>SRE Claus, at EOR conditions, %</td>
<td>>92</td>
</tr>
<tr>
<td>Total Sulphur production whole SRU, TPD</td>
<td>236</td>
</tr>
<tr>
<td>Hydrog. Reactor inlet, °C</td>
<td>255</td>
</tr>
<tr>
<td>Hydrog. Reactor outlet, °C</td>
<td>285</td>
</tr>
<tr>
<td>Hydrogen concentration on quench column top, %</td>
<td>5%</td>
</tr>
<tr>
<td>Circulating water inlet flow rate, m³/h</td>
<td>150</td>
</tr>
<tr>
<td>Quench top temperature, °C</td>
<td>41</td>
</tr>
<tr>
<td>Overall SRE (inclusive of Claus units), %</td>
<td>>99.8</td>
</tr>
</tbody>
</table>
SECOND STEP - IN FIELD TEST

Analysis of test:

- Confirmation of Feasibility study results and modifications
- Hydrogen consumption can be reduced since the hydrogen concentration on tail gas stream is high
- Steam production has a 35% increase due to higher quantity of heat exchanged in the Claus WHB
 - Because of higher steam flow rate produced, the flue gas quantity to the MP Super heater shall be increased to guarantee the level of superheating
THIRD STEP - PROJECT EXECUTION

Equipment modification

- Optimization of degassing system in order to reduce H2S in liquid sulphur.

Degassing system installed

Degassing system with additional external column

Degassing system with sulphur cooler

→ Low impact on plant layout and pit
THIRD STEP - PROJECT EXECUTION

Equipment modification

- Installation of two Thermal Reactor Burners
- Two pieces head square ferrules provided on WHB tubesheets
- Oxygen lines up to connection with air line
- Installation of one trim cooler on quench water system: plate heat exchanger
THIRD STEP - PROJECT EXECUTION

Instrument and automation modification

- Oxygen instrumentations and control system
- R thermocouple on thermal reactor furnace instead of pyrometer
- No impact on instruments installed on AAG line (CV and FE Venturi): only recalibration of transmitter
- New valves on steam and BFW connected to Claus WHB
COMMISSIONING AND START-UP

KT attended the test of Burner with oxygen injection
Basic information by KT for oxygen line cleaning

Control system function has been checked after modification

Oxygen injection: November 2017

KT follows the start up of the plant after revamping with atmospheric/oxygen enriched air

Test Run successfully performed in June 2018
CONCLUSION

The presented Study confirms KT’s expertise in proposing innovative and customized solutions to meet Client requirements.

The following challenges have been successfully overcome:

- Plant capacity increase of 50%
- Performing SRU
- Minimum impact on existing plant (two weeks of revamping activities)
Maire Tecnimont Group’s Headquarters

Via Gaetano De Castillia, 6A
20124 Milan
P. +39 02 6313.1
F. +39 02 6313.9052
info@mairetecnimont.it

KT - Kinetics Technology

Viale Castello della Magliana, 27
00148 Rome
P. +39 06 60216.1
F. +39 06 6579.3002
info@kt-met.it

www.kt-met.com