PERFORMANCE OF WELD OVERLAY REPAIRED COKE DRUMS

Mahmod Samman, Ph.D., P.E.
Houston Engineering Solutions, LLC
Houston, Texas, US
+1(832)838-4894
info@hes.us.com
Shell Bulging

- Known problem for decades.
- Can lead to cracks and leaks
- Cause for drum replacement

Courtesy of CB&I
Bulge Repairs

• Classic repairs

• Automated weld overlay repairs
 – Industry experience
 – Lack of bulge performance data
Scope

• Performance obtained from the following procedure:
 – Internal 2D laser scanning.
 – Bulging assessment and development of repair plan based on Plastic Strain Index (PSI)™.
 – Weld overlay enforcement that employs a GMAW process with automated controlled-deposition temper-bead welding.

• Limitations:
 – Above methods are not unique and have advantages and disadvantages.
 – Performance is highly dependent on underlying technologies.
 – Performance may not be identical to experience of other operators.
Equipment Description

• Eight 18 year old coke drums
• 29 feet in diameter
• Variable shell thickness between 1 and 1.5 inches.
• Shell: 1 ¼ Cr - ½ Mo base metal with stainless steel clad.
• Operated at 48-28 hours total cycle time
• High-quality fabrication
Bulging

Developed severe bulges after seven years in service.
Severe Bulge Indications
(Locations of PSI exceeding “Design” level in all drums)
Bulge Repairs

Several drums repaired using automated weld overlay in stages starting after ten years in service.
Before-After Comparison

<table>
<thead>
<tr>
<th>Drum Set</th>
<th>Drum</th>
<th>Before Repairs</th>
<th>After Repairs</th>
<th>Change</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe bulges</td>
<td>A</td>
<td>65.2</td>
<td>67.6</td>
<td>4%</td>
<td>-9%</td>
</tr>
<tr>
<td>repaired</td>
<td>B</td>
<td>73.7</td>
<td>72.5</td>
<td>-2%</td>
<td></td>
</tr>
<tr>
<td>using weld overlay</td>
<td>C</td>
<td>80.1</td>
<td>55.9</td>
<td>-30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>70.3</td>
<td>67.6</td>
<td>-4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>67.1</td>
<td>67.9</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>74.2</td>
<td>57.0</td>
<td>-23%</td>
<td></td>
</tr>
<tr>
<td>Not repaired</td>
<td>G</td>
<td>51.4</td>
<td>69.7</td>
<td>36%</td>
<td>21%</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>51.2</td>
<td>54.1</td>
<td>6%</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Plastic Strain Index PSI (%)
Single Bulge Performance

![Graph showing the performance of single bulge with years on the x-axis and maximum bulge severity on the y-axis. The graph highlights a significant improvement in 2010, followed by a decrease starting in 2012. The years 2017 and 2018 show significant improvements, indicated by large bars at the end of the graph.]

Weld Overlay Repair
Discussion

Advantage

- Reduces / control the bulges severity
- Most effective way of increasing the drum life
 - Short repair schedule
 - Low Repair complexity

Disadvantage

- Stress risers at overlay surface due to finish
- Stress riser at clad to overlay interface
- High Inconel hardness over a period of operation
- Difficult to inspect and monitor externally
Conclusions

• Repair process was successful in stabilizing severe bulges.
• Bulging severity continued to increase in unrepaired bulges. Repairs had no observed impact on bulging severity of unrepaired areas.
• Weld overlay reinforcements of circumferential seams have helped in reducing cracking tendency at these welds.
• With few exceptions, repaired areas have not cracked again despite remaining deformation and high plastic strain. The few uncharacteristic cracks that developed in repaired area were attributed to poor execution of weld perimeter or surface finish.
• This bulge scanning-assessment-repair process has helped in extending the life of this set of drums by a minimum of five years.