

Maximize performance of your FCC unit, using unconventional solutions

RefComm® Valencia, October 2018

Eva Andersson Industry Manager Refinery Alfa Laval

CONTENT

- Maximize performance of your FCC unit, using unconventional solution
- * Uptime & Availability
 - In your most fouling services choose the right solution!
- * Energy Efficiency
 - If it can be recovered, why waste it?
- * Yield Improvements
 - When the rays of the sun make your assets sweat
- * CAPEX Reduction
 - The best solution does not have to cost more....
- Reliability
 - In your most critical services, don't take any risks!

- In your most high-fouling services, choose the right solution!
- Slurry exchangers
 - Feed preheaters
 - Steam generators
 - Run Down Coolers
- Heavy fouling
 - Bottleneck
 - Frequent cleaning & repair
 - Downtime
 - Stand-by equipment
 - HSE issues

- Spiral Heat Exchangers (SHEs)
- * High Heat Transfer Efficiency
 - 2-3 times higher than S&Ts -> 2-3 times less HTA
 - Fully Counter-current flow with temperature approach of 5°C
 -> Single exchanger solution
- * Self-Cleaning Design
 - Short hold-up time
 - No dead zones & uniform velocity
 - Single channel design

- Slurry run-down cooler, Total Mider, Leuna, Germany (UOP license)

Duty:

FCC Bottoms, 10-15 tph Warm water loop 180 → 75 °C 65 ← 45 °C

Heat load: 0,9 MW

Original installation:

Two double-pipe exchangers, cleaned 40 times during first year

Replaced by: Two spiral heat exchangers, one in operation and one in stand-by,

Start-up: Beginning 1999. 2001 & 2002 – catalyst carry-over into MF. Spirals cleaned by flushing AGO. 2004 – internal inspection by TUV. No remarks. No mechanical cleaning required.

Installed Cost = 360 kEUR Annual savings in maintenance = 180 kEUR

- Optimized performance control with closed loop cooling system module
- * Optimize temperature of closed loop cooling media
 - Minimize size/cost of Spiral exchanger
- * Keep constant temperature of closed loop cooling media
 - Avoid "over cooling" of Slurry oil
 - Avoid capacity issues
 - Avoid corrosion issues due to CW control (see below)

Slurry In/Out

- References - MF Bottom Slurry Coolers

Country	Licensor	Equipment	Year
Austria	UOP	1 SHE	1992
Belgium	UOP	1 SHE	2012
Colombia		2 SHE	2018
Germany		2 SHE	92
Germany		1 SHE	2016
Germany	UOP	2 SHE	1998
Ghana	UOP	2 SHE	2000
India	UOP	5 SHE	04 & 06
Korea	UOP	3 SHE	96 & 04
Korea	UOP	3 SHE	2009
Korea	Axens	3 SHE	2017
Nigeria	UOP	2 SHE	2018
Russia		2 SHE	2011
S Africa		2 SHE	2011
Taiwan	UOP	4 SHE	1997
USA		1 SHE	2014
USA		4 SHE	2011
			2018

- Slurry / Feed heat recovery, European Refinery, (KBR license)

Duty:

FCC Slurry, 285 tph 3 FCC Feed (UCO+VGO), 200 tph 2

Total recovered heat: 23 MW

Original installation:

Two S&Ts, plugging on slurry side of solids from reactor, cleaning needed every 3-4 months, causing capacity bottleneck.

Replaced by:

Two spiral heat exchangers, 2 * 50%. Plant capacity increase of 10%:

- Increased feed preheating with 20°C
- Increased cooling of main fractionator bottoms

- Increased cooling of finished products Eliminate capacity loss during cleaning Reduced cleaning cost

Start-up: November 2013.

- Slurry / Feed heat recovery, European Refinery, (KBR license)

 Decant side opened once for inspection after 1 year operation
 No fouling

- References – MF Bottom Slurry/Feed Interchangers

Country	Licensor	Equipment	Year
Japan	UOP	2 SHE	2006
Russia		2 SHE	2012
Sweden	KBR	2 SHE	2013

- If it can be recovered, why waste it?
- Low grade energy CAN be efficiently recovered
 - OVHD vapour -> Boiler Feed or District Heating Water pre-heating
 - Hot run-downs & PAs -> Superheated steam

- Welded Plate Heat Exchangers (WPHEs)
- * Maximal Energy Recovery
 - 3-5 x higher heat transfer efficiency
 - Temperature approach of 3-5 deg C
- Compact & Light Weight
 - 4000 m2 S&T HTA* fits in 3 m2 plate space
 - 5-10 x less flooded weight
- * Low Fouling Tendency & Easy to Clean
 - 3 x longer operating period in-between maintenance
 - 1-3 days down-time for cleaning
- Cost-efficient in Corrosion-free Materials

- MF OVHD condensers, Shell Sarnia, Canada (UOP license)

1st Stage – Heat recovery: Overhead vapour BFW

141 → 87°C 128 ← 43°C

Total recovered heat: 14 MW

Preheating of BFW required to de-bottleneck boiler to provide energy for a new diesel hydrotreater to produce ULSD. Plant energy foot print not allowed to increase.

2nd Stage – Trim Cooling:Overhead vapour $87 \rightarrow 29^{\circ}C$ Cooling water $45 \leftarrow 24^{\circ}C$

Original installation:

4 S&Ts in CS, without energy recovery, suffered from corrosion of bisulphides, cyanides and chloride salts.

Replaced by: 8 WPHEs in Hastelloy C276

Start-up: January 2003

- Steam generation from hot PAs and RDs

When WPHEs are used as steam generators, they can operate with a much closer temperature approach. This means that

- 1. Same amount of saturated steam can be generated at higher pressure
- 2. More saturated steam can be generated at same pressure
- 3. Same amount of Superheated steam can be generated

- SH Steam generation from fractionator MPA, European Refinery

Duty:

MPA, 330 tph SH Steam, 15 tph

221 → 181 °C 215 ← 120 °C @ 11 bar (30°C SH)

Total recovered heat: 8,2 MW

Steam generations system comprises:

- BFW preheater
- Steam generator Separation vessel
- Steam superheater

Start up: 2002

Pay-back around 6 months, based on a steam cost of 10 USD/ton

Steam superheater

Steam generator

- References - Steam Generators from hot PAs and RDs

Country	Hot media	SH	Equipment	Year
Australia	Jet Fuel	No	2 WPHEs	2017
China	VGO	No	1 WPHE	2015
China	HVGO	No	1 WPHE	2015
Italy	VR/VBR	No	1 WPHE	2013
Netherlands	HCK MPA	Yes	4 WPHEs	2002
Netherlands	ADU HGO	Yes	3 WPHEs	2010
Turkey	HCK Kero	Yes	3 WPHEs	2012
Turkey	HCK Diesel	Yes	3 WPHEs	2017
Turkery	HCK BPA	Yes	3 WPHEs	2017
USA	VR	No	2 WPHEs	2005
USA	VR	No	1 WPHE	2009

YIELD IMPROVEMENTS

- When the rays of sun make your assets sweat

- * Maximal cooling
 - De-bottleneck of processes/improve yield
 - Reduce size/cost of ejector/compressor system

YIELD IMPROVEMENT

FCC OVHD vapour cooling, South American refinery

4 WPHEs were installed in a revamping/debottlenecking of FCC unit in Petrobras REPLAN

- 1. 1 WPHE in parallel to existing 8 S&Ts, providing 25% additional cooling capacity (10,5 MW)
- 12. 1 WPHE in parallel to existing 4 S&T, providing 5,1 MW additional cooling capacity, reducing compressor load
- 13. 1 WPHE replaced 2 S&Ts, providing 8,3 MW cooling capacity
- 18. 1 WPHE in parallel to existing S&T, providing additional cooling capacity

YIELD IMPROVEMENT

- FCC OVHD vapour cooling, South American refinery

	S&T	СР
TOTAL WEIGHT (kg, flooded)	136.000	17.500
TOTAL HTA (m2)	2960	320

Pos 1: Main Fractionator condensers, WPHE = 10,5 MW, start-up 2009

Pos 12: Compressor interstage condensers, WPHE = 5,1 MW, start-up 2009

Pos 13: Post compressor condenser, WPHE = 8,3 MW start-up 2005

CAPEX SAVINGS

- A better solution does not have to cost more....
- * When Welded PHEs will save a bundle!
 - When 2 or more CS S&Ts are needed for one service
 - Any time high grade MOC is needed
 - When installation is on structure
 - When CAPEX can be saved in fired heaters, boilers and/or coolers due to better heat recovery
 - When CAPEX can be saved in compressor/ejectors due to reduced vapour flow and/or lower pressure drop

RELIABILITY

- Welded PHEs in the refinery market
- * A well-proven solution
- Introduced to refineries in early 1990's
- Gaining market share since beginning of 2000
- Around 2400 WPHEs sold to refineries world-wide

RELIABILITY

- Welded PHEs to Refinery processes
- Used in all refinery processes
- Mainly used for heat recovery services, such as
 - ADU/VDU PHT
 - Amine & SWS F/B
 - Fractionator F/B
 - Fractionator OVHD to feed or BFW
 - Steam generation

RELIABILITY

- Spirals to heavy oil processing
- Tailor-made for high-fouling services
- * A well-proven solution
- * Introduced to refineries in mid 80's
- Over 300 Spirals delivered to refinery processes, out of which more than 170 are for heavy oil processes

SUMMARY

- Maximize performance of your FCC unit, using unconventional solutions
- * Uptime & Availability
 - In your most fouling services choose the right solution!
- * Energy Efficiency
 - If it can be recovered, why waste it?
- * Yield Improvements
 - When the rays of the sun make your assets sweat
- * CAPEX Reduction
 - The best solution does not have to cost more....
- Reliability
 - In your most critical services, don't take any risks!

