

Delayed Coking : Petro-SIMTM Modeling

Detailed Examples

Proprietary Information

Agenda

General Modeling Thoughts

- Why Do I Need A Coker Model
- You Must Have A Good Mass Balance
- What Data Is Generally Bad or Questionable Why Is This The Case
- Fit for Purpose Do I Really Need That Much Detail
- LP Generation

Areas of Discussion

- Feed to the Delayed Coker
- Reactor Model DC-SIM
- Transfer Line & The OVHD Line Quench
- Detailed Fractionator
- Detailed Gas Plant
- Simple Gas Plant for LP Generation
- Furnace Model

Why Do I Need A Coker Model

- ▶ Petro-SIMTM is the first and only process simulator capable of truly scalable modeling of all facets of processing hydrocarbons from gas-plant modeling including the production and power generation aspects of natural gas, process topsides facilities for oil and gas, through to detailed and rigorous refinery modeling including all key reaction systems. Petro-SIMTM fits itself to the type of modeling you want to do, offering two *themes* that make sure you are presented with sensible choices for available unit operations, properties and functionality.
- Petro-SIMTM Production is suited to modeling upstream or production facilities including gas plants, LNG plants and basic oil and gas separation platforms. Petro-SIMTM provides groundbreaking technology to support benchmarking, evaluation and sustained profit improvement. Gas plant operators gain a competitive advantage and enhance profitability by reducing errors, improving decision-making and providing for easy access to asset wide knowledge and expertise.
- Petro-SIMTM Refining is suited to modeling refinery and petrochemical processes, bringing a wide range of specialized reaction unit operations, extensive hydrocarbon characterization methods and a comprehensive range of refinery inspection properties to bear to help you build fully rigorous models of your facilities.

A Yokogawa Company

Reactor Model: DC-SIM

Proprietary Information

6/11/2018

Start With a Good Mass Balance

- Generally a delayed coker mass balance will be close on the coke yield.
 - This assumes that the feed meter and product meters are correct.
 - A coke yield estimate should be done to check on the mass balance
 - Find a good coke yield correlation there are several public domain correlations and can be also used as a check on the balance.
- > Normally, the H_2S and NH_3 are not measured and must be estimated.
 - Approximately 25% of the sulfur in the feed will go to H₂S
 - Approximately 15% of the nitrogen in the feed will go to NH₃
- A sulfur balance should be also done to help confirm the mass balance but care must be take to not over state the sulfur balance. A nitrogen balance is much more difficult and may not add to the quality of the mass balance.
- The mass balance flow data should take 3 to 5 drum cycles. For a 2 drum coker the timing of the samples and flow data is more critical usually the data should be taken a few hours after a drum switch and before a drum warmup.

"Modeling of Processes and Reactors for Upgrading of Heavy Petroleum"

Jorge Ancheyta

Reactor Model - DC-SIM Calibration

- The Model must have a calibration to run
- The calibration does not need to be the exact same operations and feed as the actual operations but the it should be similar
- If the calibration is not good you will get bad results
- You should generate a calibration file 1st and keep it as a separate file you may need to go back and recalibrate if/when you final simulation needs to be adjusted
- The calibration is generally done through the meters associated with each feed/product streams.

Recommendation On Calibration

- First do the calibration on mass only the sulfur and nitrogen and be add
- You may want to set the feed rate and coke yield
- If your mass balance is good hen there will be few changes in the calibration but it is highly unlikely that the calibration will match you mass balance perfectly

Case 1: Simple Material Balance Example

Average Calibration Error

A Yokogawa Company Mass Sulfur Nitrogen C:H Carbon Summary Balance Coker BPD API **Total Metals** UOP K Vol% MW Mol /Hr [BFOE] Gravity Lbs/Hr wt% wt% I bs/Hr wt% wt Ratio Yields Lbs/Hr Lbs/Hr ppm ppm 60,000 100.0% 11.24 913,223 100.00% 41.095 4.50% 4,566.1 5,000 774,809 84.84% 8.39 1,295.7 387.0 4.00 704.8 Coker Feed 913.223 **Total Feed** 60.000 100.0% 11.24 4.00 100.00% 41.081 4.50% 4.564.6 4.998 774.704 84.83% 8.37 704.8 1.295.7 387.0 1.20% 94.13% 10,916 10,270 34.1 320.3 Hydrogen Sulfide 832 0.09% 684.7 82.25% 17.0 48.9 NH3 C5 & Lter Gas Without H2S & NH3 12.478 20.8% 71.851 7.87% 57.301 79.75% 2.524.2 4.10 28.5 8.484 14.1% 39.930 4.37% 30.717 76.93% 3.34 19.0 2.099.2 Fuel Gas [C2 & Lter] 3.994 6.7% 31.921 3.50% 26.584 83.28% 4.98 49.9 640.2 LPG [C3s & C4s] 11.061 18.4% 11.86 63.28 117.113 12.82% 1.633 1.39% 44.0 384.4 98.284 83.92% 5.73 111.0 1.055.4 0.0 Light Naphtha [C5 - 300] 11.821 19.7% 11.65 34.13 147.192 16.12% 3.606 2.45% 181.7 1.234.2 124.802 84.79% 6.71 210.4 699.7 0.5 Light Gas Oil [386 - 620] Heavy Gas Oil [620 plus] 18.895 31.5% 11.29 16.50 263.306 28.83% 8.973 3.41% 638.6 2.425.5 224.295 85.18% 7.63 353.8 744.2 5.2 [17,797] 29.7% 301,711 33.04% 16,599 5.50% 3,015.6 1.00% 270,021 89.50% 23.03 1,166.2 Coke [406.9 lbs/BFOE] 54.256 120.1% 912.922 99.97% 41.081 4.50% 4.564.6 5.000 774.704 387.0 Total Products 5,998 10.0% 90,506 9.91% 3,836 338.5 3,741 77.114 85.20% 8.37 568.8 14.4 Recycle 11.09 5.18 4.24% 159.1 Coke Drum OVHD Press. psig 11.09% 99.97% 20 Coke Drum Fill Time, hrs 16 Coke wt% VCM Mass Balance Closure 100.00% Coke Drum OVHD Temp., F 820.0 Coke Drum Utilization. % of Working Vol 99.4% Coke HGI 39.06 Sulfur Balance Closure 100.00% Recycle Ratio 1.10 C-Factor 0.28 Coke wt% Shot 83.1% Nitrogen Balance Closure 100.00% Carbon Balance Closure 100.00% Calibration Error Sum 1.05% Metals Balance

This is an example of a detailed material balance, which KBC uses internally to estimate coker yields – not part of Petro-Sim

0.21%

Case 1: Simple Calibration – Mass Balance Only

Calibration with a mass balance and then a mass, sulfur and nitrogen balance

Case 2 – Multiple Feeds & Types Material Balance

					Ma	ass	Sulfi	ır	Nitr	ogen	Cart	oon	C:H			
Summary Balance Coker Yields	BPD [BFOE]	Vol%	UOP K	API Gravity	Lbs/Hr	wt%	Lbs/Hr	wt%	Lbs/Hr	ppm	Lbs/Hr	wt%	wt Ratio	MW	Mol /Hr	Total Metals ppm
3-Fd Case - VTB	70,000	62.5%	11.25	5.00	1,057,622	61.93%	54,996	5.20%	5,288.1	5,000	890,029	84.15%	8.33	666.0	1,588.1	437.0
3-Fd Case - Slurry	7,000	6.3%	9.95	0.50	109,368	6.40%	1,203	1.10%	282.7	2,585	98,214	89.80%	10.30	274.4	398.6	1,211.7
3-Fd Case - SDA Rock	35,000	31.3%	11.30	2.00	540,694	31.66%	31,360	5.80%	2,225.0	4,115	452,732	83.73%	8.40	855.4	632.1	935.0
Total Feed	112,000	100.0%	11.18	3.76	1,707,684	100.00%	87,560	5.13%	7,795.8	4,565	1,440,408	84.35%	8.43	652.1	2,618.8	644.3
				-												
Hydrogen Sulfide					23,526	1.38%	22,134	94.13%						34.1	690.3	
NH3					1,334	0.08%			1,097.4	82.25%				17.0	78.3	
C5 & Lter Gas Without H2S & NH3	24,234	21.6%			141,203	8.27%					112,812	79.89%	4.10	28.5	4,960.6	
Fuel Gas [C2 & Lter]	14,467	12.9%			63,744	3.73%					48,361	75.87%	3.15	17.2	3,700.1	
LPG [C3s & C4s]	9,767	8.7%			77,458	4.54%					64,451	83.21%	4.96	49.1	1,578.6	
Light Naphtha [C5 - 300]	18,542	16.6%	12.14	62.12	197,495	11.57%	3,195	1.62%	50.2	260.7	165,434	83.77%	5.74	108.1	1,826.9	0.0
Light Gas Oil [386 - 650]	24,183	21.6%	11.56	32.03	304,988	17.86%	8,360	2.74%	276.4	906.2	258,441	84.74%	6.82	216.0	1,411.8	0.7
Heavy Gas Oil [650 plus]	34,349	30.7%	11.22	14.45	485,366	28.42%	19,165	3.95%	848.5	1,748.1	412,232	84.93%	7.76	372.3	1,303.6	6.1
Coke [410.5 lbs/BFOE]	[32,374]	28.9%			553,772	32.43%	34,705	6.27%	5,523.2	1.00%	491,489	88.75%	23.45			1,981.1
Total Products	101,307	119.4%			1,707,684	100.00%	87,560	5.13%	7,795.8	4,565	1,440,408					644.3
Recycle	8,961	8.0%	11.06	3.68	136,708	8.01%	6,868	5.02%	386.6	2,828	115,794	84.70%	8.48	607.8	224.9	17.2

Mass Balance Closure	100.00%
Sulfur Balance Closure	100.00%
Nitrogen Balance Closure	100.00%
Carbon Balance Closure	100.00%
Metals Balance	100.00%

Coke Drum OVHD Press. psig	15	Coke Drum Fill Time, hrs	16	Coke wt% VCM	11.24%
Coke Drum OVHD Temp., F	818.0	Coke Drum Utilization, % of Working Vol	95.8%	Coke HGI	37.21
Recycle Ratio	1.08	C-Factor	0.30	Coke wt% Shot	87.0%

Calibration Error Sum	18.48%
Average Calibration Error	3.70%

This is an example of a detailed material balance, which KBC uses internally to estimate coker yields – not part of Petro-Sim

Case 2 – Multiple Feeds & Types Calibration

Aeter Data		Mass flow											Sulfur conte	nt	Sulfur content			
		Screened	Typical Error	Error Basi	Recor	ciled Rec Erro	r Screened	Typical Error	Error Basi	is	Reconciled	Rec Error	Screened	Typical Error	Error Ba	sis	Reconciled	Rec Erro
	FCC Slurry Oil-Meter	109368 lb/hr	2.00 %	Relative	v 10932	lb/hr 0.04 %	0.2585 wt %	2.00 %	Relative	¥	0.2585 wt %	0.00 %	1.1000 wt %	2.00 %	Relative	V	1.1000 wt %	0.00 %
	SDA Pitch-Meter	540697 lb/hr	2.00 %	Relative	√ 54060	lb/hr 0.02 %	0.4116 wt %	2.00 %	Relative	¥	0.4116 wt %	0.00 %	5.8000 wt %	2.00 %	Relative	¥	5.8000 wt %	0.00 %
	Vac Resid-Meter	1057627 lb/h	2.00 %	Relative	✓ 10576	3 lb/ł 0.00 %	0.5000 wt %	2.00 %	Relative	¥	0.5000 wt %	0.00 %	5.2000 wt %	2.00 %	Relative	¥	5.2000 wt %	0.00 %
	Feed Total	1707692 lb/h			17075	4 lb/ł	7796 lb/hr				7796 lb/hr		87560 lb/hr				87556 lb/hr	
	Coke-Meter	553772 lb/hr	2.00 %	Relative	✓ 55253	lb/hr 0.22 %	1.0000 wt %	2.00 %	Relative	¥	1.0000 wt %	0.00 %	6.3000 wt %	2.00 %	Relative	v	6.3000 wt %	0.00 %
	Coker_Naphtha-Meter	197495 lb/hr	2.00 %	Relative	✓ 19768	lb/hr 0.10 %	0.0260 wt %	2.00 %	Relative	¥	0.0260 wt %	0.00 %	1.6000 wt %	2.00 %	Relative	¥	1.6000 wt %	0.00 %
	Fuel_Gas-Meter	63744 lb/hr	2.00 %	Relative	✓ 63767	b/hr 0.04 %	0.0000 wt %	2.00 %	Relative	¥	0.0000 wt %		0.0000 wt %	2.00 %	Relative	¥	0.0000 wt %	
	H2S-Meter	23526 lb/hr	5.00 %	Relative	✓ 23395	b/hr 0.56 %	0.0000 wt %	2.00 %	Relative	¥	0.0000 wt %		94.1177 wt 9	2.00 %	Relative	¥	94.1177 wt 9	0.00 %
	Heavy_Coker_GO-Meter	485366 lb/hr	2.00 %	Relative	✓ 48603	lb/hr 0.14 %	0.1750 wt %	2.00 %	Relative	¥	0.1750 wt %	0.00 %	3.9500 wt %	2.00 %	Relative	¥	3.9500 wt %	0.00 %
	Light_Coker_GO-Meter	304988 lb/hr	2.00 %	Relative	✓ 305354	lb/hr 0.12 %	0.0906 wt %	2.00 %	Relative	¥	0.0906 wt %	0.00 %	2.7400 wt %	2.00 %	Relative	¥	2.7400 wt %	0.00 %
	LPG-Meter	77458 lb/hr	2.00 %	Relative	✓ 77493	b/hr 0.05 %	0.0000 wt %	2.00 %	Relative	¥	0.0000 wt %		0.0000 wt %	2.00 %	Relative	¥	0.0000 wt %	
	NH3-Meter	1334 lb/hr	5.00 %	Relative	✓ 1328 II	/hr 0.47 %	82.2436 wt %	2.00 %	Relative	¥	82.2436 wt 9	0.00 %	0.0000 wt %	2.00 %	Relative	¥	0.0000 wt %	
	Product Total	1707683 lb/h			17075	4 lb/ł	7812 lb/hr				7796 lb/hr		87718 lb/hr				87556 lb/hr	
	Overall Imbalance	9 lb/hr			1 lb/h		-16 lb/hr				0 lb/hr		-158 lb/hr				0 lb/hr	
	Overall Imbalance %	0.00 %			0.00 %		-0.20 %				0.00 %		-0.18 %				0.00 %	
	Only Overall Balances Auto Solve Auto Accent	Reconcile!	Accept Reset Value	s										Warnin Error Le Obje	g Level vel ective 4.5] 574e	1.000 3.000	>
Data Sources	Auto Solve Auto Accept Configure Reconcile Bala	Reconcile! ances Trouble	Reset Value	5										Error Le Obje	vel ective 4.9	574e	3.000	•

Case 2 – Multiple Feeds & Types Calibration

Case 2 – Generate a Material Balance

Curr	ent Cell						
							Exportable
F	31 Variables						Angles in:
	variable; j						
	А	В	С	D	E	F	G
		Vol Flow	API Gravity	Mass Flow	wt% Yield	wt% Sulfur	wt% Nitrogen
	Vac Resid	70000 barrel/day	4.994	1057663 lb/hr	61.94 %	5.2000 wt %	0.5000 wt %
	FCC Slurry	6997 barrel/day	0.5000	109326 lb/hr	6.40 %	1.1000 wt %	0.2585 wt %
	SDA Pitch	34995 barrel/day	2.003	540605 lb/hr	31.66 %	5.8000 wt %	0.4116 wt %
				1707594 lb/hr	100.00 %		
	H2S			23394 lb/hr	1.37 %		
	NH3			1328 lb/hr	0.08 %		
	Fuel Gas			63766 lb/hr	3.73 %		
0	LPG Product	10169 barrel/day	127.4	81009 lb/hr	4.74 %		
1	Naphtha	18155 barrel/day	62.19	193304 lb/hr	11.32 %	1.5978 wt %	0.0264 wt %
2	LCGO	24300 barrel/day	32.05	306427 lb/hr	17.94 %	2.7396 wt %	0.0905 wt %
3	HCGO	34592 barrel/day	14.70	487983 lb/hr	28.58 %	3.9523 wt %	0.1751 wt %
4	Coke			550382 lb/hr	32.23 %	6.3182 wt %	1.0033 wt %
5				1707594 lb/hr	100.00 %		
;							
7							
3							
9							
1							

KBC
A Yokogawa Company

📔 Delayed Coker		-
Results	Run Time Interval [hours]	0.0000
Operating Conditions	Opening Inventory [% of Max.]	50.00
Furnace	Closing Inventory [% of Max.]	50.00
Drum	Run Time at Opening Inventory [hours]	<empty></empty>
Ouench	Run Time at Closing Inventory [hours]	<empty></empty>
Eractionator	Opening Outage [ft]	67.02
4 Drafiles	Closing Outage [ft]	67.02
A Profiles	Minimum Outage [ft]	30.00
Pressure	Closing Inventory [ft3]	26171.07
Temperature	Maximum Coke Volume [ft3]	52342.13
Heat	Coke Production Rate [lb/hr]	550390
Molar Conversion	Weight of HC Vapor Leaving Drum [lb/hr]	1263551
Sulfur	Calculated Drum Fill Time (to Min. Outage) [hours]	15.98
Nitrogen	Drum Liquid Holdup [ft3]	1117.52
Metals	Notional Depth of Drum Liquid Holdup [ft]	1.581
Watson K-Factor	Drum Vapor Space [ft3]	39899.59
Molecular Weight	Total Vap Mass Rate per Drum [lb/hr]	432442
√ Yields	Total Vap Vol Rate per Drum [ACFM]	28422.4
Weight Percent Basis	Drum Vapor Velocity [ft/s]	0.6701
Weight Basis	Drum C Factor	0.3374
Volume Percent Pacia	Foam Height [ft]	12.03
Volume Percent Dasis	Foam Height with anti-Foam [ft]	6.016
Volume basis	Remaining Vapor Space Height [ft]	60.52
Fuel Gas & Light Ends	Foam Over Potential at Closing Inv, %	0.0000
Coke Properties	Foam Over Potential at Fill End, %	16.74
Economic Results		
S vs API Plot		
Diagnostics		

Case 2 – Naphtha Component Details

P Delayed Coker	arearis	ines ii	- C X	➡ Coker_Naphtha	- 🗆 ×
Calibration Calibration Setup Tuning Factors Calibration Factors Calibration Results Ext Component Factors	Parameter Cyclopentane C6 Paraffins C6 Naphthenes C6 Aromatics C6 Olefins C7 Paraffins	Value 1.000 1.000 0.5000 1.000 1.000 1.000 1.000	Generate Extended Detail	Worksheet Conditions Properties Composition K Value User Variables C5 Olefins 1-Pentene 2M-1-butene 2M-2-butene SM-1-butene	LiqVol Percents (Dry) [vol %] 1.5319 0.9425 0.5895 0.0000 0.0000 <empty></empty>
Source	C7 Naphthenes C7 Aromatics C7 Olefins C8 Paraffins C8 Naphthenes C8 Aromatics C8 Olefins C9 Paraffins C9 Naphthenes	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	as complex and details can be as complex and detailed as needed i.e. benzene content of the naphtha produce.	Economics Bulk Properties Notes Cyclopentene IC5= PENT13 tr2-Pentene CS Paraffins C 6 Aromatics Benzene Tota	0.0000 0.0000 <empty> 0.0000 0.0000 7.7383 0.4354 0.4354 v al 95.3956 vol %</empty>
	C9 Aromatics C9 Olefins C10 Paraffins C10 Naphthenes C10 Aromatics C10 Olefins	1.000 1.000 1.000 1.000 1.000 1.000		View Properties Oil Characterization Worksheet Attachments	Edit Basis -
Design Operating Dat	a Calibration Worksh	eet Results OK	🗌 Ignored	OK Delete Define from Other Stream	êğ 🌉 🔶 🐲

Case 3: Typical Delayed Coker Model

Coker Feed Definition

Proprietary Information

Feed Definition

- Set By Meter Used in the calibration
- Set by Plant Data Easy access
- Set by Crude/Vac Unit Operations best if the crude slate is defined or will be changed as part of the study. This is also done with a whole refinery model.

Simple

Vac Tower

Most refiners have crude assay data that can be easily imported into Petro-Sim. The detailed Crude unit is not needed for the feed to the Vac Unit. The Vac Unit needs better definition/fidelity to get the VTB characterized correctly.

Vac Unit This approach generally works better if we have crude assay data. Stripping Stm

Pump

HVGO

P-100

VTB

Pump

VTB

Crude Selection & Crude Rate – Very Heavy & Light Mix

Assay Sources Specification Composition Extended	Maya (CVX) Nov 2013 Texas-N.Mex.P-L Inter1983 Mars Bld (ITS) 2007 West Texas Sour (CVX) Sep 9 Utah Sweet SW (AES)	Source Oil Manager Oil Manager Oil Manager Oil Manager	Mole Fractions 0.5000 0.1500 0.1000 0.1000 0.1500	Comp Spec Source Source Source Source	Proportion Basis Mole Fractions Mass Fractions LiqVol Fractions Mole Flows Mass Flows LiqVol Flows Use All Edit Composition	ADJ-2 Design Connections Parameters Notes	Adjust Name ADJ-2 Adjusted Variable Object: Cold Crude Feed	- C X
Connections As Delete	ssay Sources Product Stream	Plots OK Dev Var Var Var Var Var Var Var Var Var Var	a Caraba Victor		Ignored	Design Moni Delete	Variable: Std Ideal Liq Vol Flow Target Variable Object: Delayed Coker Variable: (Calc) Drum (Calculated Drum Fill Time) Target Value Source © User Supplied Another Object Spreadsheet Cell tor OK	Select Variable

The crude selection, crude rate and Vac cut point can be optimized to any product spec or unit operation required. In this case we adjust the crude rate to get a 16 hour fill cycle.

Proprietary Information

Dev VTB

Col	kerl	Feed	Resu	lts-`	Vac	Unit	Cut	Point	& CI	rude ⁻	Types
						•••••					· J

Worksheet	Volume Average Boiling Point [F]	1324	A 1
Contribution	API Gravity (Dry)	1.980	
Conditions	Specific Gravity (Dry)	1.060	
Properties	Watson K	11.34	
Composition	Conradson Carbon Content [wt %]	27.9376	
K Value	Asphaltenes Content [wt %]	25.0829	
User Variables	Sulfur Content [wt %]	5.5228	
Economics	Nitrogen Content [wt %]	0.6127	
Bulk Properties	Naphthenes by Wt [wt %]	28.3297	
Notes	Aromatics by Wt [wt %]	65.2622	
Time Series	Refractive Index_67	1.565	
Time Results	Nickel Content [ppmwt]	124.4	
	Vanadium Content [ppmwt]	628.1	
	Iron Content [ppmwt]	25.63	
	Viscosity (Kinematic)_50 [cSt]	4.577e+007	
	Viscosity (Kinematic)_100 [cSt]	8.188e+004	
	C To H Ratio [wt %]	8.2927	
	Mass Lower Heating Value_Method	1.655e+004	
	Distillation ASTM D1160_01 [F]	867.2	
	Distillation ASTM D1160_05 [F]	988.6	
	Distillation ASTM D1160_10 [F]	1029	
	Distillation ASTM D1160_30 [F]	1158	
	Distillation ASTM D1160_50 [F]	1339	
	Distillation ASTM D1160_70 [F]	1538	v
	C 100 10 100 100 100 100 100 100 100 100	>	
	Property Controls		
	📂 🕂 🌷 🛔 🐪 🗙 🧏 🦌	- 8 M P	6
	1		

🗙 📙 🕼 Column: Simple Vac Tower / COL1 Fluid Pkg: Basis-1 / Peng Robinson - LK

Design	Optional Checks				Pro	Profile						
Connections	Ir	nput Summai	У	View Initial	Estimates		lemp	800.0		mpenature vs.	inay number	
Monitor	like a	Chan		like ali sum	Hank / Cares	=18	Press	700.0	4			
Specs Specs Summary Subcooling Notes	Iter	5tep 1 1.000	Equi 3.1	799e-015	Heat / Spec 2.564e-00	6	Flows	6000 5000 4000 3000 2000	2 3	4 5	6 7 8	9 10 11
	Spe	cific <u>a</u> tions										
				Specifie	d Value	Curren	t Value	Wt.	Error	Active	Estimate	Current
	Ref	lux Ratio			2.000		2.000	4.10	Be-006			V
	VTB	TBP CutPoin	t On F		990.0 F		990.0	-1.05	9e-006	✓	✓	✓
	Con	ndenser Temp	peratur		250.0 F		250.0	7.65	4e-009	✓	✓	✓
	LVG	O TBP CutPo	int On		670.0 F		802.5		0.2077			
E Feeder-100									-		×	
Assay Sources				Source	Mole F	actions	Comp S	ipec	Propo	ortion Ba	ions	
Specification	Maya (CV)	() Nov 2013		Oil Mana	ger	0.5000	So	ource		ore Fract	ions	
Composition	Texas-N.M	lex.P-L Inter1	983	Oil Mana	ger	0.1500	So	ource		Val Era	tions	om 0
Extended	Mars Bld (ITS) 2007		Oil Mana	ger	0.1000	So	ource		voi Frac	uons	
	West Texa	s Sour (CVX)	Sep 9	Oil Mana	ger	0.1000	So	ource		JIE FIOW	2	
	Utah Swe	et SW (AES)		Oil Mana	ger	0.1500	So	ource	O Ma	ass Flow	s	
										iVol Flov e All	NS	Outlets [

DC-SIM Results

📔 Delayed Coker

The more paraffinic the coker feed the larger DT between the furnace and drum inlet temperature difference from the furnace outlet to the drum inlet and from the drum inlet to the drum overhead.

 \times

П

The pressure profile is general hydraulics with most heater outlets at about 90 to 100 psig

The temperature and pressure profile should match expected operating conditions. Bad data should not be used and the coke drum overhead temperature is almost always bad.

DC-SIM Results

P Delayed Coker

Results	Run Time Interval [hours]	0.0000
4 On continue Constituines	Opening Inventory [% of Max.]	50.00
Operating Conditions	Closing Inventory [% of Max.]	50.00
Furnace	Run Time at Opening Inventory [hours]	<empty></empty>
Drum	Run Time at Closing Inventory [hours]	<empty></empty>
Quench	Opening Outage [ft]	67.02
Fractionator	Closing Outage [ft]	67.02
Profiles	Minimum Outage [ft]	30.00
Pressure	Closing Inventory [ft3]	26171.07
Temperature	Maximum Coke Volume [ft3]	52342.13
Heat	Coke Production Rate [lb/hr]	566248
Molar Conversion	Weight of HC Vapor Leaving Drum [lb/hr]	1158590
Sulfur	Calculated Drum Fill Time (to Min. Outage) [hours]	16.00
Nitrogen	Drum Liquid Holdup [ft3]	131.78
Metals	Notional Depth of Drum Liquid Holdup [ft]	0.1864
Watson K-Factor	Drum Vapor Space [ft3]	40885.33
Molecular Weight	Total Vap Mass Rate per Drum [lb/hr]	398157
Vields	Total Vap Vol Rate per Drum [ACFM]	27272.2
Weight Percent Basis	Drum Vapor Velocity [ft/s]	0.6429
Weight Basis	Drum C Factor	0.3172
Volume Descent Pasis	Foam Height [ft]	7.094
Volume Percent Dasis	Foam Height with anti-Foam [ft]	3.547
Volume Basis	Remaining Vapor Space Height [ft]	60.52
Fuel Gas & Light Ends	Foam Over Potential at Closing Inv, %	0.0000
Coke Properties	Foam Over Potential at Fill End, %	11.27
Economic Results		
S vs API Plot		
Diagnostics		
Design Operating Data (Calibration Worksheet Results	

OK

Petro-SIM[™] has an extensive set of output or report result for the reactor that help define the yields, operating parameters and product properties.

 \times

Ignored

Delete

A Yokogawa Company

Transfer Line & Blowdown

Proprietary Information

6/11/2018

Blow Down

Best practice is to have the coke drum quench done with blowdown slop streams. This allows for a cleaner BD operation and avoiding wet slops going to the tower.

Typically, about 4 to 6 % of the overall coker yields will wind up or report to the BD system. This modeling method helps resolve these process dynamic affects. Some refineries are able to process external slops thru the BD system.

A more complex BD system can be modeled as a dynamic system if required.

 \times

Pipe Profile View - Drum to Frac Tower Transfer Line

Proprietary Information

 \times

Drum to Frac Tower Transfer Line

 \times

Pipe Profile View - Drum to Frac Tower Transfer Line

A Yokogawa Company

Main Fractionator Model & Heat Removal

Proprietary Information

6/11/2018

Detailed Main Fractionator

🕼 Column: Main Fractionator / COL26 Fluid Pkg: Basis-1 / Peng Robinson - LK

Design Connections Monitor Specs Specs Summary Subcooling Notes	Optional Checks Input Summary N Iter Step Equili 1 1.000 2.3	View Initial Estimates ibrium Heat / Spec 89e-006 3.754e-00	Profile Temp Press Flows		Net Flow vs. Tr	ay Number	33 5		The fractionator trays loads must be watched closely to avoid drying the tray. The tower will not converge if the trays run dry.
	Specifications]	
		Specified Value	Current Value	Wt. Error	Active	Estimate	Currer 🔺		
	Condenser Temperatur	120.0 F	120.0	-4.886e-007	•	~			
	Tower Top Temperatur	272.5 F	272.5	-1.038e-006	V	V	V		
	Lean Oil from MF Rate	1.900e+004 barrel/day	1.900e+004	4.458e-006	V	V			To avoid running the travs dry it is
	16Main TS Liquid Flo	1.481e+004 barrel/day	1.481e+004	-2.674e-008	V	V	V		
	HGO PA_TRet(Pa)	440.0 F	440.0	0.0000	V	V			common to have a tray loading between
	Btms Prod Rate	127881 lb/hr	127881	1.182e-007	V				the LGO and HGO. This spec will also
	LGO D2887_90	627.0 F	627.0	-4.549e-007	✓				
	Naphtha D86 Vol_90	166.9	<empty></empty>	<empty></empty>					drive where heat is removed in the tower.
	Tower Naphtha Draw F	2765 barrel/day	1.367e+004	3.943					A high trav load between the LGO and the
	Wild Naphtha Liq Vol F	2779 bpd	48396	16.41					HCO will result in more heat removal at
Design Parameters	Side Ops Rating Works	d Spec Group Ac	tive Update	Inactive Distop	Degrees	s of Freed	lom 0		the top of the tower but too much heat removal in the tower can have other problems – i.e. flooding, cold OVHD etc
Delete	Run Reset		Converged			Update	Outlets	lgnored	

_

 \times

31

Detailed Main Fractionator

Column Flowsheet

Similar to a sub-flowsheet, the column flowsheet is where you install and define streams and operations contained in a column such as:

- •Tray sections
- Condensers
- Reboilers
- •Side strippers
- Heat exchangers
- Pumps

Petro-SIM contains ten pre-built column flowsheet templates to help you install a typical type of column and then customize it to your specifications. The column flowsheet desktop environment closely resembles the flowsheet environment. As well, the Column tab becomes available offering you additional tools and options that you can use to design, modify and converge column flowsheets.

The tower details can be reviewed for each tower in the simulation

Tray Rating / Flooding Estimate

Quick tray flooding calculation are possible and provide a good estimate or evaluation. A 85% of flood is a normal design practice but the drum steam out conditions need to be factored in this flooding analysis.

Tray Results						
	Upper Naphtha Section	Rich Oil to LGO draw	LGO to HGO Trays	HGO PA	Flash Zone	^
Additional Information						
Internals	Valve	Valve	Valve	Valve	Packed	
Section Diameter [ft]	24.00	24.00	24.00	24.00	24.00	
Max Flooding [%]	74.66	77.76	59.42	78.21	43.86	
X-Sectional Area [ft2]	452.4	452.4	452.4	452.4	452.4	
Section Height [ft]	16.00	8.000	12.00	6.000	0.2500	
Section DeltaP [psi]	0.9013	0.4497	0.5513	0.3822	4.969e-004	
Number of Flow Paths	2	2	1	4	***	
Flow Length [in]	118.0	112.0	256.0	59.50		
Flow Width [in]	244.0	246.5	243.3	242.3		
Max DC Backup [%]	42.37	47.13	47.94	45.49		
Max Weir Load [USGPM/ft]	64.71	81.74	125.6	94.42		
Max DP/Tray [psi]	0.1160	0.1225	0.1105	0.1324		
Tray Spacing [in]	24.00	24.00	24.00	24.00		
Total Weir Length [in]	432.7	445.7	131.9	931.6		
Weir Height [in]	2.000	2.000	2.000	2.000		
Active Area [ft2]	399.9	383.5	432.6	400.5		

Gas Plant

Proprietary Information

Gas Plant Details

A Yokogawa Company

The heat removal requirements for a pump-around can be exported to the main flowsheet to develop and evaluate utility requirements i.e. steam generated in unit.

Detailed heat exchanger rating and operations can be evaluated with the addition of the HTRI modeling of the heater.

Again the simulation is built fit for purpose. A simple heater is generally adequate but Petro-Sim provides much more exchanger detailed analysis if required.

A Yokogawa Company

Proprietary Information

Furnace Operations

General Fired Heater Coking

Costs -> Capital vs Operating Absorbed $= \begin{array}{c} Surface \\ Area \end{array} X \begin{array}{c} Heat Flux \\ Flux \end{array}$ Tube Skin Temperature Heat Flux

Coke formation occurs at the boundary layer where the velocity is low and the temperature is high.

The coke thickness acts as insulation to heat transfer causing the tube wall temperature to increase and higher fuel gas firing .

High heat flux and low velocities will increase tube fouling / coking

A Yokogawa Company

Radiant Box Heat Flux

Heat Flux = 0.4 * 0.173 *
$$\left\{ \left[\left(\frac{T_g}{100} \right)^4 - \left(\frac{T_s}{100} \right)^4 \right] + 7 * \left[T_g - T_s \right] \right\}$$

 $T_g = the \ bridge \ wall \ temperature$

The radiant fire box is modeled to further evaluate the performance of the heater and optionally can generate the heat flux delivered to the process.

- The last term is a convective heat transfer adjustment
- This form of the equation gives reasonable bridge wall temperature or fire box temperaturestypically about 1500°F to 1700°F

Convection Heat Transfer - Heat Flux

- A convection flux profile has very little radiant heat and the convection heat transfer is a more complex simulation
- The actual flux profile, in the convection section, is not as critical as long as the crossover temperature is known. The convective heat transfer can be adjusted to converge on the known or assumed cross over temperature.
- The crossover temperature shifts slightly as the heater fouls.

41

Petro-SIMTM Kinetics

Bulk Phase

 $BRxn_n$ = Residence Time * $U1 * A1 * e^{\left(-\frac{B1*E1}{T_{bulk}} + C1*K1\right)} + BRxn_{n-1}$

Wall Film Rxn

$$WRxn_n = \text{Residence Time} * BRxn_n * A2 * e^{\left(-\frac{B2*E2}{T_{film}} + C2*K2\right)}$$

A Yokogawa Company

The colloidal instability index and the Na effects on heater fouling have been added to the heater model.

hen MV1 > 0) $Cok_n =$ Initial Thickness + $\left\{ Days * \frac{A3}{Tube inside surface} * \left[WRxn_n * \left(1 - \frac{Velocity}{MV1 * MaxVelocity} \right) \right] \right\}$

U1 is function of Colloid Instability Index (CII) compared to saved calibration value

The heater model calculates the coke deposited based on the tube boundary wall condition. Time at temperature kinetics determines the coke generated and the shear forces (fluid velocity) determines how much is removed. The difference between coke generated and coke removed (velocity) will determine the coke deposited. The rate of coke deposited changes or is dynamic as the heater fouls and the fouling model take several steps through the heater run to model the overall heater fouling. Typically 7 or more steps are needed to estimate the fouling dynamics.

42

KBC A Yokogawa Company

Colloid Instability Index

- Colloid Instability Index (CII)
 Asphaltenes+Saturates Aromatics+Resins
- SARA synthesis from crude assay data is not available yet
- Furnace Feed SARA are specified with stream synthesis
- Some value of sulfur and nitrogen must also be input

➡ VR			×
Synthesis Plant Data Configuration Diagnostics	Data Source Refractive index 152.6 F Asphaltenes content [wt %] Aromatics content by weight [w Saturated rings content [wt %]	Input VR Synthesis ▼ 1,5000 9.0187 28.9771 16.0000	
	Conradson carbon content [wt Distillation TBP_1 vol % [F] Distillation TBP_10 vol % [F] Distillation TBP_30 vol % [F] Distillation TBP_50 vol % [F] Distillation TBP_90 vol % [F] Distillation TBP_99 vol % [F] Liq. Mass Density (Std. Cond) (C Nickel content [ppmwt] Nitrogen content [wt %] Sulfur content [wt %]	15.6890 627.2 935.6 1049 1131 1265 1412 1494 10.01 37.74 0.4898 1.4897	
Worksheet Syr	Attachments OK efine from Other Stream	•	•

Heater Results

P Coker Furnace 1 @ EOR 49 days

The heater model generates a detailed results section. Additionally the model can export some of the critical result to Excel for detailed fouling case studies.

Example: Baker Chart for Reduced Feed and Stm Rates

KBC

Heater Results

Coke & TMT 0.3500 1200 - Coke Thickness last time step 🔶 Tube Metal T 0.3000 1100 0.2500 -1000 SmallLength (in) Temperature (F) 0.2000 900.0 0.1500 800.0 0.1000 -700.0 5.000e-002 600.0 0.0000 -500.0 0.0000 5.000 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 Х Values Setup Plots XX Name Plot Coke & TMT Delete

Most of the results generated can be plot but the model can export some of the critical result to Excel for detailed fouling case studies.

. -

Heater Results-Furnace CII vs Fouling Rate

COLLOIDAL INSTABILITY INDEX - CII

Crude Cases – Furnace CII vs Fouling Rate

CII vs Fouling Rate

FURNACE FEED - CII

Furnace Outlet Temperature vs Days Online

Days Online

Furnace Outlet Temperature vs Days Online

Furnace COT vs 1,300°F EOR

Furnace Outlet Temperature vs Fouling Rate

COT vs Fouling Rate

FURNACE COT, °F

Typical Heater Simulation Results & Analysis

Heater Simulation Results & Analysis

Heater Simulation Results & Analysis

Heater Simulation Results & Analysis

Pressure Profile

Typical heater output and results Steam can be injected at any point in the heater simulation

Na Content vs Fouling Rate

SOR 0 The SOR and EOR fouling rates are different due to the 0 increased velocity at the EOR EOR \odot 0 8 10 12 14 16 18 20 22 24 26

Coker Feed Na vs Fouling Rate

FEED NA PPM

FOULING RATE, °F/DAY

Na Content vs Days Online

Coker Feed Na vs 1,300°F EOR

High Na content results in increase heater fouling.

DAYS ONLINE

A Yokogawa Company

Generating LP Vectors

Proprietary Information

6/11/2018

LP Utility

LP Utility

The LP Utility creates assay tables and reactor tables for use in programs such as *PIMS*[™] and *GRTMPS*[™]. It also calculates Base Delta Tables and multi-variable linear regression coefficients for the setup you have given it, if necessary. The LP Utility can generate two basic forms of tables:

Assay

Reactor

Both tables share some common required setup functionality:

- On the Observed Variables page, indicate the variables that you are interested in collecting as the data sets are generated.
- On LP Tags page, define the tags for streams, objects, and properties that the LP Utility uses to generate the relevant LP Tag in the table it is generating.
- Optionally, on the <u>Swing Cuts</u> page, you can choose to model swing cuts in any distillation column in your flowsheet and the LP Utility will calculate the properties of those swing cuts, and the effect that those swing cuts have on any properties being collected downstream of the swing for each data set it runs. The Swing Cuts page can be used in conjunction with any kind of table generation.

LP Utility-Quick Results

КВС
A Yokogawa Company

_

<u>Object</u>	Property	BAS	Object	Property	Base	Inputs 1	Inputs 2	
Unit	Unit	barrel/day	Unit	Unit				
LP Utility-1	Base		LP Utility-1	WCS	25%	55%	28%	
LP Utility-1	Actual		LP Utility-1	BAK	75%	45%	72%	
LP Utility-1	Delta							
LP Utility-1	Row 3		Object	Property	Base	Inputs 1	Inputs 2	
LP Utility-1	WBALLPG	3.4%	LP Utility-1	BPDFeed	11,000	11,000	11,000	
LP Utility-1	WBALNap	7.8%	LP Utility-1	VBALFeed	100%	100%	100%	
LP Utility-1	WBALLGO	21.7%	LP Utility-1	WBALFG	5%	5%	5%	
LP Utility-1	WBALCoke	25.0%	LP Utility-1	VBALFG	16%	16%	16%	
LP Utility-1	WBALHGO	36.4%	LP Utility-1	VBALLPG	6%	6%	6%	
LP Utility-1	WBALFG	4.9%	LP Utility-1	WBALLPG	3%	3%	3%	
LP Utility-1	VBALFeed	100.0%	LP Utility-1	BPDLPG	686	670	686	
LP Utility-1	VBALLPG	6.2%	LP Utility-1	WBALNap	8%	8%	8%	
LP Utility-1	VBALNap	11.0%	LP Utility-1	VBALNap	11%	11%	11%	
LP Utility-1	VBALLGO	25.7%	LP Utility-1	BPDNap	1,210	1,186	1,208	
LP Utility-1	VBALCoke	27.9%	LP Utility-1	WBALLGO	22%	21%	21%	
LP Utility-1	VBALHGO	37.6%	LP Utility-1	VBALLGO	26%	25%	26%	
LP Utility-1	VBALFG	15.8%	LP Utility-1	BPDLGO	2,829	2,739	2,814	
LP Utility-1	BPDFeed	11000	LP Utility-1	VBALHGO	38%	35%	37%	
LP Utility-1	BPDLPG	686.2170807	LP Utility-1	WBALHGO	36%	34%	36%	
LP Utility-1	BPDNap	1210.305147	LP Utility-1	BPDHGO	4,131	3,865	4,120	
LP Utility-1	BPDLGO	2828.869464	LP Utility-1	massCoke	483.2	568.6	493.0	Ston/Day
LP Utility-1	massCoke	483.2423729	LP Utility-1	WBALCoke	25%	29%	25%	
LP Utility-1	BPDHGO	4131.290116	LP Utility-1	XBALCoke	28%	33%	29%	

Result from the LP are easily moved to Excel for review and analysis

\sim	I P	Utility	<i>.</i> - <i>.</i>	IP	Utility	/- ¹
	6.0	Othic	y -	LF	Othic	<u> </u>

Name LP Utility-1

Performance	Results						
Observables		Base	Inputs 1	Inputs 2			
Exporting	WCS	0.2500	0.5494	0.2811			
Exporting	BAK	0.7500	0.4506	0.7189			
Errors							
		Base	Inputs 1	Inputs 2			-
	massCoke [tn(short)/d	483	569	493			-
	WBALCoke	0.2504	0.2875	0.2545			
	VBALCoke	0.2794	0.3288	0.2851			
	VBALLPG	0.0624	0.0610	0.0623			
	WBALLPG	0.0341	0.0325	0.0339			
	BPDLPG [barrel/dav]	686	670	686			
	WBALLGO	0.2167	0.2070	0.2149			
	VBALLGO	0.2572	0.2490	0.2559			
	BPDLGO [barrel/dav]	2829	2739	2814			
	WBALNap	0.0778	0.0751	0.0773			
	VBALNap	0.1100	0.1078	0.1098			
	BPDNap [barrel/dav]	1210	1186	1208			
	WBALFG	0.0488	0.0497	0.0487			
	VBALFG	0.1576	0.1650	0.1579			
	BPDFeed [barrel/day]	11000	11000	11000			
	VBALFeed	1.0000	1.0000	1.0000			
	VBALHGO	0.3756	0.3514	0.3745			
	WBALHGO	0.3637	0.3364	0.3615			~
							•
	Selected DataSet Actio	ons		r	View Options		
	DataSet	i Selected: Dat	laset I		As Columns	UP lags	
/	Set In Flowsheet		Re-Run		⊖ As Rows	O Names	<u>\</u>
							-
Data Generation	Performance Analysis S	ub-Model					

Delete

Thank You!

Sim Romero - Principal Consultant

KBC (A Yokogawa Company) T: +1 281 597 7940 | M: +1 832 494 0441 | F: +1 281 616 0900 W: www.kbc.global | E: SRomero@kbcat.com

Maria Aldescu

Senior Staff Consultant

KBC Advanced Technologies, Inc., 15021 Katy Freeway, Suite 600, Houston, TX, 77094, United States T: +1 281 597 7913 | M: +1 713 572 7903 | F: +1 281 616 0900 W: www.kbc.global | E: MAldescu@kbcat.com

Mel Larson Principal Consultant

KBC Advanced Technologies, Inc., 15021 Katy Freeway, Suite 60 Houston, Texas, 77094, United States T: +1 281 597 7943 | M: +1 281 831 8202 | F: +1 281 616 0900 W: www.kbc.global | E: MLarson@kbcat.com

