COMPREHENSIVE LIFE ASSESSMENT OF A COKE DRUM

NUCLEAR NDT RESEARCH & SERVICES, BUCHAREST, ROMANIA

Marian Soare, Mihai Predoi, Sorin Minea, Constantin Bunescu, Cristian Diba

Presented by: Sorin Minea
COKE DRUMS ISSUES

- Coke drums are special pressure vessels subjected to strong and varied transient loads.
- They are expensive items with a long manufacturing cycle, therefore a realistic and accurate life prediction can save a lot of time and money.
- It is vital to know as much as possible their actual condition.
- The owner must have plans for:
 - Long term operation, Inspection, Repair and Replacement
- Usual questions:
 - How many cycles are there left?
 - To crack
 - To through wall crack
 - What is to repair and when?
 - How can we extend the lifetime of the drum?
 - Structural modifications
 - Operational optimizations
MAIN DAMAGE MECHANISMS

• Low-cycle fatigue from thermal transient
 • Large cyclic stress sources:
 • Thermal distributions generated by: coke bed interactions, random local flows through coke bed and around it near wall
 • Thermal heating and cooling rates
 • Embrittlement – due to the long term exposure to high temperatures

FATIGUE ASSESSMENT PROBLEMS

• Low-cycle fatigue is the most important damage factor – a low number of high value stress range cycles add more fatigue than a high number of low value stress range cycles.
• Hard to assess the stress range over a cycle due to the non-uniform and continuously changing temperature map of the walls.
STRESS ASSESSMENT

In order to address these problems we developed a stress assessment method based on temperature monitoring using thermocouples.

• **Thermocouples advantages**
 – Able to provide a complete image of the temperature field on the entire coke drum surface
 – Through the mapping of the temperature on the drum surface we may:
 • Assess the stress in **every** point with a fair accuracy
 • … even in the points where a strain gauge cannot be set
 • Assess the intensity of thermal shocks
 • Study the coking process and the possibilities to optimize it

• **Classical method - Strain gauge**
 – Precise, in a single point on the outer face of the drum
 – No information about the stress state around the measuring point. On the other face it depends on the curvature of the wall, i.e. the temperature map
 – Impossible to set in some locations
Temperature monitoring system

Temperature records analysis

Data acquisition and storage

Displacement monitoring system

Displacement records analysis

Stress analysis

Maximal load cases of the coke drum

Fatigue calculation

Fatigue damage in representative areas
TEMPERATURE MONITORING SYSTEM

- Main components: 80 thermocouples, data acquisition modules, data acquisition software.
- Possibility of gathering data over a long period of time (in this case 1 year).
- Keeping all the records in a database, with the possibility of subsequent analysis.
- View, both in real time and offline, of the temperature distributions on the coke drum using the software developed by Nuclear NDT Research & Services.
- The results may be recorded and stored in video format or in the original format of the producer.

The temperature monitoring system, developed by “Nuclear NDT Research & Services”, was installed in 2015 on one of the coke drums in operation at “ROMPETROL RAFINARE - MIDIA / ROMANIA, member of KazMunaiGas Group.”
DATA ANALYSIS

The recorded data are processed in order to estimate the temperatures in any point of the coke drum, using special software developed by Nuclear NDT.

Atypical cooling cycle – the cooling fluid touches the wall at level +14
Total time at temperatures greater than 450°C, extrapolated from the temperatures measured over the monitored period.

The highest temperature gradients are on the cone area, followed by the lower half of the coke drum.
测得顶部位移：13.9 ÷ 131.6 mm。

最大设计值是152.5 mm。

在3%的监测周期中，顶部位移超过100 mm。

有偏好方向N (55%) 和V (59%)。
Longitudinal stress variation in the coke drum walls during the cooling. Finite element simulation performed by Nuclear NDT.

HOT SPOTS
- Skirt attachments,
- Tri-metal joint seams,
- Circumference seams in shell,
- Nozzles, Miscellaneous, attachments, Bulge peaks and valleys
FATIGUE CALCULATION

- We analyzed every cycle and identified the time moments when the temperature distribution leads to significant stresses (over the design allowable stress) in the structure of the coke drum.
- In each of this time moments we calculated the stress distribution in the coke drum generated by the temperature distribution.

Example of a significant stress moment – Isolated cold spot
FATIGUE CALCULATION

• From the data base, gathered from the recorded cycles, we selected several hundreds moments with significant temperature gradients.

• In each of this time moments we calculated the stress distribution in the coke drum generated by the temperature distribution in 128 de points in 8 representative sections of the camera and in 64 points in 4 sections in the skirt welding.

• By organizing the results with respect to time we built the stress variation over the entire monitored period in all 192 points. For each point, based on this graph, we conducted the fatigue calculus according to EN 13445-3.

Variation of the principal stress differences in a point at level 10 m
Fatigue degradation, D (%), extrapolated for several thousands cycles, including the effect of random thermal events

<table>
<thead>
<tr>
<th>Nr.</th>
<th>LEVEL</th>
<th>Circumferential position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0°</td>
</tr>
<tr>
<td>1</td>
<td>CONE -3,0 M EXT/INT</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>CONE -4,5 M EXT/INT</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>LEVEL 0 M EXT/INT</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>LEVEL 2,5 M EXT/INT</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>LEVEL 5 M EXT/INT</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>LEVEL 7,5 M EXT/INT</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>LEVEL 10 M EXT/INT</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>LEVEL 12,5 M EXT/INT</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>SKIRT WELDING</th>
<th>0°</th>
<th>45°</th>
<th>90°</th>
<th>135°</th>
<th>180°</th>
<th>225°</th>
<th>270°</th>
<th>315°</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>EXTERIOR</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>MIDDLE</td>
<td>31</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>INTERIOR (LOWER CORNER)</td>
<td>52</td>
<td>58</td>
<td>74</td>
<td>179</td>
<td>44</td>
<td>57</td>
<td>50</td>
<td>135</td>
</tr>
<tr>
<td>12</td>
<td>WELDING CONCENTRATOR</td>
<td>153</td>
<td>194</td>
<td>237</td>
<td>696</td>
<td>137</td>
<td>185</td>
<td>138</td>
<td>468</td>
</tr>
</tbody>
</table>
CLADDING FATIGUE

The fatigue calculation of the cladding was made at each level where thermocouples are set, taking into account the mean number of thermal shocks recorded by the thermocouples at that level.

<table>
<thead>
<tr>
<th>Vmax [°C/min]</th>
<th>Medium number of thermal shocks at cooling over several thousands cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4,5 m</td>
</tr>
<tr>
<td>0 – 10</td>
<td>1163</td>
</tr>
<tr>
<td>10 – 20</td>
<td>1403</td>
</tr>
<tr>
<td>20 – 30</td>
<td>315</td>
</tr>
<tr>
<td>30 – 40</td>
<td>90</td>
</tr>
<tr>
<td>40 – 50</td>
<td>38</td>
</tr>
<tr>
<td>50 – 60</td>
<td>23</td>
</tr>
<tr>
<td>60 – 70</td>
<td>0</td>
</tr>
<tr>
<td>70 – 80</td>
<td>0</td>
</tr>
<tr>
<td>80 – 90</td>
<td>0</td>
</tr>
<tr>
<td>90 – 100</td>
<td>0</td>
</tr>
</tbody>
</table>

Classification of the thermal shocks recorded during cooling at each level of the coke drum with respect to the cooling rate.
Thermal shock – Variation over time of the equivalent stress and temperature at the inner face of the cladding (blue) and in the base material at the contact with the cladding (red). Finite element simulation performed by Nuclear NDT.
CLADDING FATIGUE

Life expectancy of the cladding when considering the effect of thermal shocks (red), compared to life expectancy without taking into account the thermal shocks (blue)

Life expectancy - cladder

Life expectancy - cladder seams
Left up – Life expectancy of the cladding at the inner face of the wall. Minimum value ≈ 10500 cycles

Left down – Life expectancy of the cladding at the contact with the wall. Minimum value ≈ 70000 cycles

Right - Life expectancy of a tri-joint seam, in a horizontal section at level +12,6 m. Minimum value ≈ 1550 cycles in the contact line between the base material, cladding and the weld.
NOTABLE FACTS

1. The coke drum cooling process is highly irregular, the cooling fluid circulating through the coke and touching the wall at any level. The temperature differences between two measuring points are frequently exceeding 200°C, the maximum measured values being 374,3°C on the shell, 350,8°C on the cone and 282,5°C on the skirt.

2. The stresses in the lower edge of the skirt weld are frequently exceeding the yield limit. The toughness of the weld is a crucial factor in decreasing the fatigue degradation rate.

3. The fatigue degradation of the coke drum material is due in a great proportion to exceptional events. Such type of events, leading to very high stresses, occurred on average in 2 – 3% of the monitored cycles.

4. Using EN13445-3 we estimated that, on average, cracks will begin to occur in the skirt weld after 1630 cycles (in the most stressed two points the estimated number of cycles to crack drops down to half).

5. Between 12% and 67% of the total fatigue damage of the cladding (depending on the level) comes from thermal shocks, the rest is due to the cyclic warming at the vacuum residue temperature.
COMPLETED STAGES

1. We created a database of the coke drum temperatures recorded at 30 seconds interval, which may be used in subsequent analysis.
2. We performed the analysis of the temperature distribution corresponding to all the monitored cycles to extract the data needed in the assessment of stress levels and fatigue damage of the coke drum structure and cladding.
3. We assessed the fatigue damage of the material in the chosen points of the coke drum, based on the temperature distributions recorded during the monitored period of time.
4. We analyzed the thermal shock effects on the cladding at the heating, filling and cooling phases and evaluation of the fatigue damage of the cladding.

FUTURE DEVELOPMENTS

5. Optimization of the operating procedure (stripping and cooling) in order to increase the remaining life of the coke drums, based on the technological parameters which can be modified in operation.
6. Optimization of the skirt shape and joint with the coke drum.

We would like to thank ROMPETROL RAFINARE - Midia / ROMANIA, member of KazMunaiGas Group, for the understanding and support to apply the methodology developed by “Nuclear NDT Research & Services” and described in this paper to analyze the thermo - mechanical behavior of a coke drum in operation.
S.C. Nuclear NDT Research & Services S.R.L.
Bucharest / ROMANIA, Soseaua Berceni 104 - Central Laboratory Building
Postal code 041919
Postal Office No. 8 P.O. Box 137

Phone # (+4)021-301.25.75
Fax # (+4)021-301.26.52
E-mail addresses: office@nuclear-ndt.ro
soare.marian@nuclear-ndt.ro
tehnic@nuclear-ndt.ro

ROMPETROL RAFINARE S.A.
Bulevardul Navodari, nr. 215, Pavilion Administrativ, Navodari, Judetul Constanta, ROMANIA
phone: + (40) 241 50 60 00 + (40) 241 50 61 50
fax: + (40) 241 50 69 30
office.rafinare@rompetrol.com
www.rompetrol-rafinare.ro
www.rompetrol.com