Simulation, Turnarounds, and FCC Operational Cycles

Sam Clark* and Peter Blaser CPFD, LLC *Presenting author: <u>sam.clark@cpfd-software.com</u>

CPFD, LLC · 10899 Montgomery Blvd. NE, Suite A · Albuquerque, NM 87111 USA

cpfd-software.com

Simulation of FCCUs

Simulation goals

- Look inside FCCU
- Identify root cause of underperformance
- Learn from current and historical operations
- Virtual testing of proposed changes

Impact of simulation

- Increase likelihood of success
- Reduced risk of negative consequences during operation
- Reduce risk of unplanned shutdown

Simulation results in this presentation are from Barracuda Virtual Reactor®

When to Use Simulation?

Established Baseline

- Proactive modeling efforts ٠
- Enables quick response for other simulation efforts

Post-Audit

- Used to understand unexpected performance changes
- Can lead to planning for next planned turnaround

significant changes

cpfd-software.com 3

CPFD, LLC · 10899 Montgomery Blvd. NE, Suite A · Albuquerque, NM 87111 USA

RACUDA VIRTUAL REACTOR

Simulation During Turnaround Planning

Example courtesy of a North American refiner

- Afterburn, CO promoter, MAB limitations
- Thermal asymmetry, O2 bypassing, high CO

Source: R. Fletcher, AFPM AM-16-15

Regenerator Maldistribution

Changes tested before turnaround

• New spent catalyst distributor design

Outcome

- Emissions within specs
- Afterburn nearly eliminated
- Reduced air requirements
- Eliminated CO promotor use

Baseline New Design
Source: R. Fletcher, AFPM AM-16-15

Simulation during Post-Audit

Example Courtesy of Viva Energy Refining Pty Ltd (Geelong, Australia)

2011 changes

- Increased afterburn / flue gas temp spikes
- Panel operator intervention
- Reduced throughput

Baseline models of historical operations created prior to 2016 turnaround

	2011 Changes*
Design	
SCID	New design
Cat cooler	Hoppers removed
Operational	
Catalyst circulation	+ 4.4%
Air rate	+14.7%
SCID aeration	Major changes
Cat cooler	Minor changes

* Changes relative to pre-2011 baseline configuration and operating conditions

Source: P. Blaser, ARTC 2018

CPFD, LLC • 10899 Montgomery Blvd. NE, Suite A • Albuquerque, NM 87111 USA

Simulation of Historical Operations

Source: P. Blaser, ARTC 2018

CPFD, LLC · 10899 Montgomery Blvd. NE, Suite A · Albuquerque, NM 87111 USA

Increased Maldistribution

Spent cat < 10 seconds residence time shown

Percent reaching east side < 10 seconds

- Pre-2011: 21.3%
- 2011-2016: 10.7%

Maldistribution of air and catalyst increased significantly following the 2011 turnaround

Source: P. Blaser, ARTC 2018

Effects of Maldistribution

Maldistribution of gas entering cyclones

• The increased maldistribution of spent catalyst results in nonuniformity of gas composition at the cyclone inlet elevation

O2 breakthrough

- Both simulation and operational data show the increase in O2 breakthrough
- Transient CO and O2 levels result in the observed afterburn and flue gas temperature spikes

Source: P. Blaser, ARTC 2018

CPFD, LLC · 10899 Montgomery Blvd. NE, Suite A · Albuquerque, NM 87111 USA

BARRACUDA VIRTUAL REACTOR

2016 Turnaround and Outcome

2016 Turnaround

- Simulation indicated the planned changes would be beneficial
- The changes were implemented during the 2016 turnaround

Outcome

- 12 months of operational data were compared for the operational periods immediately before and after the 2016 turnaround
- Average afterburn 5°C lower
- Number of panel interventions reduced 75%
- Max daily average throughput 4% higher

Source: P. Blaser, ARTC 2018

CPFD, LLC • 10899 Montgomery Blvd. NE, Suite A • Albuquerque, NM 87111 USA

Simulation During Unplanned Shutdowns

Example courtesy of a North American Refiner

• Changes made in late 2015 had unexpected problems

FCC exceeded emissions constraints:

- NOx: 10% over 365 day rolling average
- CO: 43% over 365 day rolling average
- Particulate emissions: frequent high loss episodes
- Significant afterburn

Radioactive tracer study performed

- Significant maldistribution
- Potential damage

Source: R. Fletcher, AFPM CCS 2016

CUDA VIRTUAL REACTOR

Formation of Team and Initial Finding

Shutdown scheduled to repair expected damage

The simulation predicted significant gas channeling (without air grid damage)

• The spent catalyst distributor exacerbates the maldistribution

6 weeks before shutdown: Team formed to propose options if no damage was found

• Refinery engineers, corporate staff, cyclone vendor, two independent consultants, simulation expertise

Source: R. Fletcher, AFPM CCS 2016

What Could be Modified if No Damage Found?

During shutdown could alter:

- Air grid orientation
- Dipleg discharge direction
- Shortening secondary dipleg lengths

Source: R. Fletcher, AFPM CCS 2016

Mixing and Channeling

No case addresses root cause

Can incremental improvements be obtained?

- Regions with highest time-averaged gas bypass shown
- Cases 2 and 3 dissipate gas jets at a lower elevation

Top: Half model **Bottom:** Distributor view orientation **Elevation slice** Case 0 Case 2 Current Case 1 Case 3

Source: R. Fletcher, AFPM CCS 2016

cpfd-software.com 14

Thermal and Gas Composition Profiles

Simulations showed

- Regenerator temperature profiles dominated by maldistribution
- High O2 reaching dilute phase
- Afterburn due to O2 and CO mixing in the dilute phase
- Cases 2 and 3 show better mixing and less maldistribution

Source: R. Fletcher, AFPM CCS 2016

CPFD, LLC · 10899 Montgomery Blvd. NE, Suite A · Albuquerque, NM 87111 USA

CPFD, LLC · 10899 Montgomery Blvd. NE, Suite A · Albuquerque, NM 87111 USA

RACUDA VIRTUAL REACTOR

Outcome

During shutdown

- The air grid wasn't broken
- Simulation gave the refiner confidence to implement the change
- The refiner opted for Case 2 with the secondary dipleg heights shortened by 1.5 ft

Post-shutdown:

- NOx & CO maintained below 365 day rolling average
 - Dropped significantly after start-up
 - Air rate optimization performed and NOx additive used
- Catalyst losses: complete elimination of the catalyst loss events

Source: R. Fletcher, AFPM CCS 2016

16

Simulation as a Proactive Tool: Established Baseline Model

Enables fast response for any situation

- Unplanned shutdown
- Post-audit
- Turnaround planning

Usually step 1 for all other use cases

- "How was it running before?"
- "Why did this change occur?"
- "What if we change this hardware?"

Conclusions

Simulations can be used in all stages of the FCC turnaround cycle

- Different time constraints depending on situation
- Different limitations on possible solutions

Having an established baseline model is critical

• Enables fastest possible response time in all situations

Acknowledgements and References

Turnaround Planning Example

• Ray Fletcher, Sam Clark, and Peter Blaser, AM-16-15: "Identifying the Root Cause of Afterburn in Fluidized Catalytic Crackers".

https://www2.afpm.org/forms/store/ProductFormPublic/am-16-15-identifying-the-root-cause-of-afterburn-in-fluidized-catalyticcrackers

http://cpfd-software.com/resources/webinars/identifying-the-root-cause-of-afterburn-in-fcc-regenerators

Post-Audit Example

 Peter Blaser, John Pendergrass, John Gabites, Angus Brooke, and Timothy Brown, "Application of CPFD Modeling to Support RCCU Hardware Changes at the Viva Energy Geelong Refinery", presented at ARTC, April 23-35, 2018.

http://artc.wraconferences.com/

Unplanned Shutdown Example

• Ray Fletcher, Peter Blaser, John Pendergrass, and Ken Peccatiello, CAT-16-17: "The Experience of a Team of Experts to Resolve Severe FCC Regenerator Maldistribution".

https://www2.afpm.org/forms/store/ProductFormPublic/cat-16-17-the-experience-of-a-team-of-experts-to-resolve-severe-fcc-regenerator-maldistribution

http://cpfd-software.com/resources/webinars/2017-ertc-presentation-resolving-severe-regenerator-maldistribution

COTO