Oxygen Enrichment at Sulphur Recovery Unit

Murat KOLBAŞI
Contents

- KOÇ Group Overview
- TÜPRAŞ Overview
- Project Summaries
KOÇ GROUP
Overview
KOÇ GROUP

- Koç Group is Turkey’s largest industrial and services group in terms of revenues, exports, employees, taxes paid and market capitalization at Borsa İstanbul.
- Koç Holding has leading positions with strong competitive advantages in various sectors, such as energy, automotive, consumer durables and finance.
- Following an average annual growth rate of 11% in consolidated profit in US$ terms between 2005-2015, Koç Holding ranks among the world’s top 500 companies.

Largest Industrial Group in Turkey
4 of the top 5 industrial enterprises in Turkey are Koç Group companies*

#1 Tüpraş
#2 Ford Otosan
#3 Arçelik
#5 Tofaş

Largest Exporters in Turkey
4 of the top 10 exporters in the Turkish Exporters’ Assembly ranking are Koç Group companies**

#1 Ford Otosan
#2 Tüpraş
#6 Tofaş
#7 Arçelik

Largest R&D Investments in Turkey
Turkey’s Largest Intellectual Property Rights Portfolio with more than:

- 7,500 trademarks
- 4,100 patent families
- 9,600 patents
- 800 industrial design registrations
- 5,400 Internet domain names

3 Koç Group companies ranked in the top 10 on the Turkish Patent Institute’s list of “the Highest # of Patent Applications” in 2015

#1 Arçelik
#3 Ford Otosan
#4 Tofaş

*İstanbul Chamber of Commerce ranking (2016 report), ** Turkish Exporters’ Assembly ranking (2016 report)
Leadership Positions in Strategic & Lucrative Business Lines

Energy
- **Main Companies**: Tüpraş* / Opet / Aygaz* / Entek
- **Domestic Market Position – Market Share**
 - Sole petroleum refiner in Turkey – 29%
 - #2 in LPG distribution – 18%

Automotive
- **Main Companies**: Ford Otosan* / Tofaş* / TürkTraktör* / Otokar* / Otokoç
- **International Alliances**: Ford Motor Co. / Fiat Chrysler Automobiles / Case New Holland
- **Domestic Market Position – Market Share**
 - #1 in total automotive – 22%
 - #3 in passenger cars – 13%
 - #1 in commercial vehicles – 52%
 - #1 in farm tractors – 47%
 - #1 in automotive retailing
 - #1 in car rental
 - #2 in operational car leasing

Consumer Durables
- **Main Companies**: Arçelik*
- **International Alliances**: LG Electronics (Air conditioner manufacturing)
- **Domestic Market Position – Market Share**
 - #1 in white goods – c. 50%
 - #1 in air conditioners – 51%

Finance
- **Main Companies**: Yapı Kredi Bankası*
- **International Alliances**: UniCredit
- **Domestic Market Position – Market Share**
 - #4 in total banking assets among private banks
 - #1 in credit cards – 22%
 - #1 in leasing – 20%
 - #1 in factoring – 18%

Other Lines of Business
- **Main Companies**: Tat Gıda* (Food) / Koçtaş (DIY Retailing) / Setur (Duty Free) / Marmaris Altınyumus* (Tourism)

* Listed companies
TÜPRAŞ
Company Overview
Tüpraş Shareholder Structure

Publicly Traded 49%

Distribution of Domestic / Foreign Ownership of Tüpraş shares

- Foreign Ownership: 16%
- Domestic Ownership: 84%

Distribution of Ownership of Tüpraş shares:

- DİTAŞ: 79.98%
- Koç Holding: 77%
- Opet: 3%
- Aygaz: 20%

51%
Tüpraş Refining Assets & Distribution Network

İzmit
- 11.0 MT Capacity
- NC: 14.5
- Storage Capacity: 3.0 mn m³
- Base oil 400 k tons

İzmir
- 11.0 MT Capacity
- NC: 7.66
- Storage Capacity: 2.5 mn m³

Kırıkkale
- 5.0 MT Capacity
- NC: 6.32
- Storage Capacity: 1.4 mn m³

Batman
- 1.1 MT Capacity
- NC: 1.83
- Storage Capacity: 0.25 mn m³

Total Capacity: 28.1 mn. ton
Nelson Complexity: 9.5
Tüpraş Storage Cap.: 7.2 mn. m³
OPET Storage Cap.: 1.1 mn. m³

İzmit
- MARMARA Terminal
- 721,000 m³

İzmit
- Antalya Terminal
- 19,392 m³
- 240,000 m³

İzmir
- Mersin Terminal
- 43,130 m³

Kırıkkale
- Giresun Terminal
- 721,000 m³

Batman
- Terminal
- Refinery

Total Capacity: 28.1 mn. ton
Nelson Complexity: 9.5
Tüpraş Storage Cap.: 7.2 mn. m³
OPET Storage Cap.: 1.1 mn. m³
Project Summaries
Total Capacity: 28.1 mn. ton
Nelson Complexity: 9.5
Tüpraş Storage Cap.: 7.2 mn. m³

İzmir
- 3 SRU Units
- 70 ton/day Claus
- 190 ton/day SuperClaus
- 420 ton/day EuroClaus

İzmit
- 2 SRU Units
- 65 ton/day Claus
- 182 ton/day SuperClaus

Kırıkkale
- 2 SRU Units
- 60 ton/day Claus
- 75 ton/day SuperClaus

Tüpraş Sulphur Recovery Units
Tüpraş Sulphur Recovery Units

<table>
<thead>
<tr>
<th>Technology</th>
<th>Izmit Refinery</th>
<th>Izmir Refinery</th>
<th>Kirikkale Refinery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Claus+SCOT</td>
<td>SuperClaus®</td>
<td>Claus</td>
</tr>
<tr>
<td>Licensor</td>
<td>Black&Veatch</td>
<td>Jacobs Comprimo</td>
<td>Amoco</td>
</tr>
<tr>
<td>S/U year</td>
<td>1997</td>
<td>2007</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>2005</td>
<td>2009</td>
</tr>
<tr>
<td>Design Capacity (tpd)</td>
<td>90</td>
<td>170</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>179</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>197</td>
<td>80</td>
</tr>
<tr>
<td>Maximum Operating Capacity (tpd)</td>
<td>90</td>
<td>190</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>460</td>
<td>197</td>
<td>80</td>
</tr>
<tr>
<td>Service Unit</td>
<td>HYC</td>
<td>CCR, HYC</td>
<td>HYC</td>
</tr>
<tr>
<td></td>
<td>HYC, Coker</td>
<td></td>
<td>CCR</td>
</tr>
<tr>
<td></td>
<td>HYC</td>
<td></td>
<td>HYC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCR</td>
</tr>
</tbody>
</table>
Project Summary

- **Definition of Project**
 Installation of low level Oxygen Enrichment Unit in SRU units.

- **Scope of Project**
 The main objective of SRU is install oxygen enrichment unit to increase sulphur product capacity in SuperClaus ® and EuroClaus ® process with minimum investment and operational cost, maximum operation flexibility and reliability in Izmit, Izmir and Kirikkale Refineries.

- **Project Schedule**
 Process Study : 6 months
 Implementation & start-up 6 months for each unit.

- **Project Cost**
 2-5 MUSD. Investment cost includes commissioning, procurements, civil works, assembly, roads, automation, E&I works.
Advantages O2 Enrichment Process

The Aim of Oxygen Enrichment in SRU units.

- Debottlenecking of existing SRU (capacity increase)
- Reduction of process gas volume
- Reduction of pressure drop
- Reduction of energy consumption
- Increase of combustion temperature
- No damaging or change of burner, combustion chamber and boiler
The Effect of Oxygen Enrichment in SRU units on,

- Sulfur Conversion
- COS CO, COS, CS2 Emissions
- Energy consumption
- Emission
- RF temperature
- Mechanical Integrity.
Safety limit for O_2-Enrichment: 28%
Design Evaluation of Enrichment in SRU’s

![Reaction Furnace Temperature (°C) vs. O2 Concentration %](image)

- **RF Temperature**: 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800
- **O2 Concentration %**: 21, 22, 23, 24, 25, 26, 27, 28
- **Design**: Red line
- **Design +10%**: Orange line
- **Design +15%**: Yellow line
- **Design +20%**: Blue line
- **Design +22%**: Dark blue line
- **Design +33%**: Dark orange line
- **Design +49%**: Gray line
- **Temp. Limit**: Black line

This graph illustrates the reaction furnace temperature in °C against O2 concentration in %. The various lines represent different designs and their temperature limits.
Design Evaluation of Enrichment in SRU’s

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6070</td>
<td>2284</td>
<td></td>
<td>1323.8</td>
<td>5.79E+07</td>
<td>0.95</td>
<td>98.67</td>
<td>209.5</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td>6677</td>
<td>2512</td>
<td></td>
<td>1275.7</td>
<td>5.85E+07</td>
<td>0.99</td>
<td>90.06</td>
<td>208.4</td>
<td>Failure: Superclaus (insufficient air)</td>
<td>10%</td>
</tr>
<tr>
<td>6981</td>
<td>2627</td>
<td></td>
<td>1253.5</td>
<td>5.88E+07</td>
<td>1.01</td>
<td>85.97</td>
<td>210.0</td>
<td>Failure: Superclaus (insufficient air)</td>
<td>15%</td>
</tr>
<tr>
<td>7288</td>
<td>2740</td>
<td></td>
<td>1232.5</td>
<td>5.89E+07</td>
<td>1.02</td>
<td>82.26</td>
<td>209.4</td>
<td>Failure: Superclaus (insufficient air)</td>
<td>20%</td>
</tr>
<tr>
<td>7405</td>
<td>2786</td>
<td></td>
<td>1356.8</td>
<td>6.66E+07</td>
<td>1.30</td>
<td>85.87</td>
<td>227.4</td>
<td>Failure: Superclaus (insufficient air)</td>
<td>22%</td>
</tr>
<tr>
<td>8073</td>
<td>3038</td>
<td></td>
<td>1393.4</td>
<td>7.22E+07</td>
<td>1.52</td>
<td>90.06</td>
<td>231.8</td>
<td>Failure: Superclaus (insufficient air)</td>
<td>22%</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6070</td>
<td>2284</td>
<td></td>
<td>1473.1</td>
<td>6.47E+07</td>
<td>1.20</td>
<td>90.11</td>
<td>191.3</td>
<td>9.8</td>
<td>0</td>
</tr>
<tr>
<td>6677</td>
<td>2512</td>
<td></td>
<td>1417.1</td>
<td>6.57E+07</td>
<td>1.25</td>
<td>96.01</td>
<td>224.3</td>
<td>15.9</td>
<td>10%</td>
</tr>
<tr>
<td>6981</td>
<td>2627</td>
<td></td>
<td>1391.1</td>
<td>6.61E+07</td>
<td>1.27</td>
<td>98.41</td>
<td>240.3</td>
<td>25.1</td>
<td>15%</td>
</tr>
<tr>
<td>7288</td>
<td>2740</td>
<td></td>
<td>1366.2</td>
<td>6.65E+07</td>
<td>1.29</td>
<td>99.54</td>
<td>253.7</td>
<td>96.9</td>
<td>20%</td>
</tr>
<tr>
<td>7405</td>
<td>2786</td>
<td></td>
<td>1356.8</td>
<td>6.66E+07</td>
<td>1.30</td>
<td>87.94</td>
<td>250.7</td>
<td>18.7</td>
<td>22%</td>
</tr>
<tr>
<td>8073</td>
<td>3038</td>
<td></td>
<td>1393.4</td>
<td>7.22E+07</td>
<td>1.52</td>
<td>90.06</td>
<td>231.8</td>
<td>Failure: Superclaus (insufficient air)</td>
<td>33%</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6070</td>
<td>2284</td>
<td></td>
<td>1574.4</td>
<td>6.91E+07</td>
<td>1.36</td>
<td>83.84</td>
<td>178.0</td>
<td>7.8</td>
<td>0</td>
</tr>
<tr>
<td>6677</td>
<td>2512</td>
<td></td>
<td>1513.5</td>
<td>7.02E+07</td>
<td>1.41</td>
<td>90.42</td>
<td>211.2</td>
<td>10.4</td>
<td>10%</td>
</tr>
<tr>
<td>6981</td>
<td>2627</td>
<td></td>
<td>1485.1</td>
<td>7.07E+07</td>
<td>1.44</td>
<td>93.27</td>
<td>227.8</td>
<td>12.6</td>
<td>15%</td>
</tr>
<tr>
<td>7288</td>
<td>2740</td>
<td></td>
<td>1457.9</td>
<td>7.12E+07</td>
<td>1.47</td>
<td>95.85</td>
<td>244.3</td>
<td>16.4</td>
<td>20%</td>
</tr>
<tr>
<td>7405</td>
<td>2786</td>
<td></td>
<td>1447.6</td>
<td>7.13E+07</td>
<td>1.47</td>
<td>96.79</td>
<td>250.7</td>
<td>18.7</td>
<td>22%</td>
</tr>
<tr>
<td>8073</td>
<td>3038</td>
<td></td>
<td>1393.4</td>
<td>7.22E+07</td>
<td>1.52</td>
<td>90.06</td>
<td>231.8</td>
<td>Failure: Superclaus (insufficient air)</td>
<td>33%</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6070</td>
<td>2284</td>
<td></td>
<td>1726.3</td>
<td>7.55E+07</td>
<td>1.56</td>
<td>74.37</td>
<td>157.9</td>
<td>6.4</td>
<td>0</td>
</tr>
<tr>
<td>6677</td>
<td>2512</td>
<td></td>
<td>1658.4</td>
<td>7.67E+07</td>
<td>1.64</td>
<td>81.77</td>
<td>191.0</td>
<td>7.8</td>
<td>10%</td>
</tr>
<tr>
<td>6981</td>
<td>2627</td>
<td></td>
<td>1626.7</td>
<td>7.73E+07</td>
<td>1.67</td>
<td>85.01</td>
<td>224.3</td>
<td>8.7</td>
<td>15%</td>
</tr>
<tr>
<td>7288</td>
<td>2740</td>
<td></td>
<td>1596.2</td>
<td>7.78E+07</td>
<td>1.71</td>
<td>87.99</td>
<td>223.4</td>
<td>9.9</td>
<td>20%</td>
</tr>
<tr>
<td>8074</td>
<td>3038</td>
<td></td>
<td>1523.6</td>
<td>7.92E+07</td>
<td>1.78</td>
<td>94.62</td>
<td>267.2</td>
<td>15.3</td>
<td>33%</td>
</tr>
<tr>
<td>9044</td>
<td>3403</td>
<td></td>
<td>1444.6</td>
<td>8.06E+07</td>
<td>1.86</td>
<td>99.75</td>
<td>315.6</td>
<td>156.1</td>
<td>49%</td>
</tr>
<tr>
<td>9105</td>
<td>3426</td>
<td></td>
<td>1440.0</td>
<td>8.06E+07</td>
<td>1.87</td>
<td>99.75</td>
<td>315.6</td>
<td>Failure: Superclaus (insufficient air)</td>
<td>50%</td>
</tr>
</tbody>
</table>
Management Standards X Operational Discipline

Operational Excellence

- Management Standards
 - Process Hazard Analysis, HAZOP,
 - MOC-Tech & Process Technology package of project
 - Procedures, work permits

 with

 trained FLM's (first line managers) and Leaders

dedicated team work
Site Execution Enrichment Location in SRU’s
Enrichment Location in SRU´s
Equipment Overview
Performance Evaluation of Enrichment in SRU´s

- Capacity Increase % 15
- No need additional equipment
- PSRM and HAZOP requirements overviewed.
- Quickwin project
- Min investment and quick return on Investment
SRU O2 Enrichment Economic Results

- Project Economic Results
- 15-20 % SRU capacity increase
- Project time 6-9 months
- Project Cost 2-5 mUSD
- Project Income: 20-25 mUSD (incl Crude oil margin)
Thanks