Using SWSPlus™ for Sulfur Capacity Addition

By Charles L. Kimtantas and Martin A. Taylor
ckimtant@bechtel.com & mataylo1@bechtel.com

Bechtel Hydrocarbon Technology Solutions, Inc.
3000 Post Oak Blvd, Houston, Texas 77056
Outline

Sour Water Effects on Sulfur Plant Design
SWSPlus™ - Ammonia Recovery Process
Benefits of a licensed unit
Historical uses of Ammonia
Ammonia Markets
Case Studies
Summary
Sour Water

- Sour water is normally found in refineries with 100’s of ppmw to a few % of ammonia (NH₃) and hydrogen sulphide (H₂S)
- Ammonia and H₂S are in equimolar quantities
 - Molecular weight of NH₃ ~ 17
 - Molecular weight of H₂S ~ 34
 - Mass ratio of H₂S:NH₃ in sour water is therefore ~2:1
- Sour Water Strippers boil off contaminants
- Stripped water to either recycling or discharge
 - Phenolic water to a desalter
 - Non-phenolic water to a hydrotreater
- Vapors to SRU
 - Approximately equimolar in NH₃, H₂S, and water
A Sulfur Plant is not an Ammonia Plant

Sulfur Recovery Units do not recover ammonia

We cannot convert ammonia into sulfur, only nitrogen and water

\[\text{NH}_3 + \frac{3}{4} \text{O}_2 \rightarrow 0.5 \text{N}_2 + 1.5 \text{H}_2\text{O} \]

If it is not destroyed, ammonia forms salts with H\(_2\)S that deposit in the colder parts of the unit – the final sulfur condenser.

\[\text{NH}_3 + \text{H}_2\text{S} \rightarrow \text{NH}_4\text{HS} \]

This leads to higher pressure losses and an unplanned shut-down.

Avoiding this requires

- A minimum residence time in the Reaction Furnace
- A minimum temperature in the Reaction Furnace, which is difficult to maintain.
- A proprietary burner
- Additional oxygen for the chemical reactions with ammonia
NH₃ + 0.75 O₂ → 0.5 N₂ + 1.5 H₂O
H₂S + 0.5 O₂ → S + H₂O
Ammonia requires 50% more air/oxygen than sulfur
Considering nitrogen in air and the water in SWS AG,

one ton of ammonia takes up the space of ~3 tons of sulfur.

Removing diluent nitrogen (Air and NH₃ combustion) helps the Claus reaction because reactants are more concentrated.

Removing sources of water (SWS AG water, NH₃ combustion water) helps the Claus reaction equilibrium.

Removing mass allows for expansion or CAPEX reduction.
Effects on Sulfur Plant Design

- \(\text{NH}_3 + 0.75 \text{ O}_2 \rightarrow 0.5 \text{ N}_2 + 1.5 \text{ H}_2\text{O} \)
- \(\text{H}_2\text{S} + 0.5 \text{ O}_2 \rightarrow \text{S} + \text{H}_2\text{O} \)
- Ammonia requires 50% more air/oxygen than sulfur
- Considering nitrogen in air and the water in SWS AG, one ton of ammonia takes up the space of ~3 tons of sulfur.
- Removing diluent nitrogen (Air and \(\text{NH}_3 \) combustion) helps the Claus reaction because reactants are more concentrated.
- Removing sources of water (SWS AG water, \(\text{NH}_3 \) combustion water) helps the Claus reaction equilibrium.
- Removing mass allows for expansion or CAPEX reduction.
- \[\text{NH}_3 + 0.75 \text{O}_2 \rightarrow 0.5 \text{N}_2 + 1.5 \text{H}_2\text{O} \]
- \[\text{H}_2\text{S} + 0.5 \text{O}_2 \rightarrow \text{S} + \text{H}_2\text{O} \]
- Ammonia requires 50% more air/oxygen than sulfur
- Considering nitrogen in air and the water in SWS AG, **one ton of ammonia** takes up the space of ~**3 tons of sulfur**.
- Removing diluent nitrogen (Air and \text{NH}_3 combustion) helps the Claus reaction because reactants are more concentrated.
- Removing sources of water (SWS AG water, \text{NH}_3 combustion water) helps the Claus reaction equilibrium.
- Removing mass allows for expansion or CAPEX reduction.
Ammonia in the feed to an SRU is not desirable.

What can we do to handle additional ammonia and/or hydrogen sulfide?

- Add a new SRU
- Add oxygen
- Separate the NH3 and H2S
 » SWSPlus™ Ammonia Recovery Process
 » Phosam W
The SWSPlus™ Process
The SWSPlus™ Process

- Sour Water
- Hydrocarbon Vapors
- Degasser
- Deoil

- WWT Feed Preparation Tank
- Feed Product Exchanger
- Acid Gas Stripper
- Reboiler
- Condensate
- Steam

- Ammonia Vapor
 - To Ammonia Purification and liquefaction

- Treated Water
 - 10-50 ppm NH₃
 - 1-25 ppm H₂S

- Acid Gas Product
 - 50 ppm NH₃

© 2018 Bechtel Hydrocarbon Technology Solutions, Inc.
The SWSPlus™ Process
The SWSPlus™ Process
The SWSPlus™ Process

- Ammonia Vapor from WWT Process
 - Ammonia Vapor to Incineration
 - Cooling Water
 - Anyhydrous Liquid Ammonia
 - Refrigeration Unit
 - Anyhydrous Liquid Ammonia

- Scrubbers
 - Water
 - Caustic

- Ammonia Absorber
 - Water
 - Aqueous Ammonia

- Anhydrous Ammonia Production
- Aqueous Ammonia Production

© 2018 Bechtel Hydrocarbon Technology Solutions, Inc. | 13
Benefits of a Licensed Unit

Proprietary simulating tool from Chevron heritage
- Better thermodynamic data covering the entire range of NH3 concentrations
- Used to design over 25 units, 9 Pre-Concentrators, and multiple SWS

Metallurgy
- 50+ years of operating experience
- 25+ refineries

Operating know-how
- Licensor staff
- Licensee experience
Ammonia markets

Anhydrous and aqueous ammonia* are commodities more common than sulfur and may be transported by pipeline, rail, or truck.

*82-86% used for fertilizer in the US

Two main Products

- **Anhydrous Ammonia**
 - 99.5 wt% NH3 minimum
 - 0.5 wt% H2O maximum
 - 0.58 specific gravity at 100 F
 - 5-10 ppmw oil maximum
 - Vapor pressure is approximately 200 psig at 100 F (13.6 bar at 38 C)

- **Aqueous Ammonia**
 - 26 Baumé
 - 28-30 wt% NH3
 - 0.897 specific gravity maximum at 60 F (15.6 C)
 - 0.05 wt% non-volatile matter
 - Atmospheric vapor pressure at ambient temperatures
Historical Uses of Ammonia from SWSPlus™

- SWSPlus™ ammonia may be blended with Haber ammonia
 - Haber ammonia is made from natural gas and air
 - Haber ammonia is the industrial standard
 - Analogous to “Claus quality sulfur”

- Among licensees
 - 47% Anhydrous
 - 23% Aqueous
 - 30% Incinerate

In all cases, the benefit is that the Ammonia never enters the SRU
Case Study A – Process Data

- **Sulfur Plant**
 - Grassroots facility
 - Single 1200 MTPD sulfur capacity
 - Rich acid gas (93% H₂S)
 - Case 1 = 15% of SRU feed sulfur from SWS acid gas (85% from Amine Regenerators)
 - Case 2 = 25% of SRU feed sulfur from SWS acid gas (75% from Amine Regenerators)

- **Sour Water Stripper Feed**
 - 340 NCMH sour water flow
 - Case 1 – 1.2 wt % NH₃ and 2.4 wt % H₂S in sour water
 - Case 2 – 2.0 wt % NH₃ and 4.0 wt % H₂S in sour water

- **Products**
 - 50 ppmw NH₃ in stripped water
 - 10 ppmw H₂S in stripped water
 - Anhydrous Ammonia by using compression
 - <5 ppmw H₂S in ammonia product
 - H₂S to Claus unit
Case Study A – Process Data

▪ Sulfur Plant
 – Grassroots facility
 – Single 1200 MTPD sulfur capacity
 – Rich acid gas (93% H₂S)
 – Case 1 = 15% of SRU feed sulfur from SWS acid gas (85% from Amine Regenerators)
 – Case 2 = 25% of SRU feed sulfur from SWS acid gas (75% from Amine Regenerators)

▪ Sour Water Stripper Feed
 – 340 NCMH sour water flow
 – Case 1 – 1.2 wt % NH₃ and 2.4 wt % H₂S in sour water
 – Case 2 – 2.0 wt % NH₃ and 4.0 wt % H₂S in sour water

▪ Products
 – 50 ppmw NH₃ in stripped water
 – 10 ppmw H₂S in stripped water
 – Anhydrous Ammonia by using compression
 – <5 ppmw H₂S in ammonia product
 – H₂S to Claus unit

© 2018 Bechtel Hydrocarbon Technology Solutions, Inc. | 18
Case Study A – Economic Data

- 3 year construction period (with zero cash flow)
- 2% escalation of TIC (Total Installed Cost)
- Pre-tax basis
- 3% of TIC for maintenance per year
- Catalyst/Chemicals (initial fill & annualized) included
- Utilities considered:
 - 600 psig steam generation
 - SWSPlus™ reboilers MP steam consumption
 - Cooling Water
 - Electrical Power
Case Study A – Results

25% of Sulfur Recovery Unit Feed as Sour Water Stripper Acid Gas
1,500 gpm
2% NH₃
4% H₂S

15% of Sulfur Recovery Unit Feed as Sour Water Stripper Acid Gas
1,500 gpm
1.2% NH₃
2.4% H₂S
Case Study A – Results

IRR=0 is break even NH3 price; $350 for 15% case and $205 for 25%

- 25% of Sulfur Recovery Unit Feed as Sour Water Stripper Acid Gas
 - 1,500 gpm
 - 2% NH₃
 - 4% H₂S

- 15% of Sulfur Recovery Unit Feed as Sour Water Stripper Acid Gas
 - 1,500 gpm
 - 1.2% NH₃
 - 2.4% H₂S

Average NH3 Price of $530/tonne
Case Study B – Process Data

▪ Sulfur Plant
 – Existing facility
 – Three 400 MPTD SRU Trains (1200 MTPD sulfur capacity), each one is:
 » Modified Claus Plant
 » Thermal stage plus 3 Catalytic Stages
 » Hydrogenation-Amine type TGTU
 » Thermal Oxidizer firing natural gas
 » Rich acid gas (93% H₂S)

▪ Sour Water Strippers
 – Process processes a fixed percentage of ammonia in SRUs (20.9%)
 – 1/3 H₂S, 1/3 NH₃, 1/3 H₂O

▪ Variable for the case study is the concentration of ammonia
 – Case 1 is 0.99 wt% NH₃ and 1.98 wt% H₂S (1235 gpm sour water flow)
 – Case 2 is 1.98 wt% NH₃ and 3.96 wt% H₂S (2470 gpm sour water flow)
Case Study B – Process Data

- Scenario: Refinery expansion resulting in
 - 400 MTPD incremental sulfur
 - Ammonia (SWS Gas flow) increases proportionately
 » Same concentration of NH₃ and H₂S in the SRUs as pre-expansion

- Products
 - 50 ppmw NH₃ in stripped water
 - 10 ppmw H₂S in stripped water
 - Anhydrous Ammonia by using compression
 - <5 ppmw H₂S in ammonia product
 - H₂S to Claus unit (no change)
Case Study B – Economic Data

- 3 year construction period (with zero cash flow)
- 2% escalation of TIC (Total Installed Cost)
- Pre-tax basis
- 3% of TIC for maintenance per year
- Catalyst/Chemicals (initial fill & annualized) included
- Utilities considered:
 - 600 psig steam generation
 - SWSPlus™ reboilers MP steam consumption
 - Natural gas consumption in TOU
 - Cooling Water
 - Electrical Power
Case Study B – Results

![Cumulative Cash Flow Chart](#)
Case Study B.1 – Results

Cumulative Cash Flow

Start-Up 25 years

SRU-B.1
SWSPlus-B.1
Case Study B.2 – Results

The graph shows the cumulative cash flow over a 25-year period for SRU-B.1, SWSPlus-B.1, and SWSPlus-B.2. The cash flow is measured in units from -2.0 to 2.0 on the y-axis, with the x-axis representing time from Start-Up to 25 years.
Case Study B – Combined Results

- SRU Train (400 MTPD, no SWSPlus™)
 - Claus Unit plus Tail Gas Treating Unit plus Thermal Oxidizer (Incinerator)
 - Basis of cash flow comparison with value = 1.0
 - Negative cash flow (sulfur sales do not exceed operating costs)
 - Cumulative value is -1.6 times SRU train capex during the project life
 - Cost of doing business

- Case B.1 (2470 gpm sour water, no SRU train)
 - Smaller CAPEX than an SRU train
 - Positive cash flow (ammonia revenue exceeded operating costs)
 - Did not recoup all capex over the project life
 - Did save 1.3 times the value of an SRU train during the project life
 - Financially attractive

- Case B.2 (1235 gpm sour water, no SRU train)
 - Smaller CAPEX than an SRU train or Case B.1 due to smaller water flow rate
 - Positive cash flow (ammonia revenue exceeded operating costs)
 - Able to recoup capex over the project life and more than 1.5 times capex of SRU train
 - Net increment compared to SRU is 3.1 times SRU train capex
 - Financially attractive
Ammonia pricing

- Main trading hubs are in Tampa, Yuzhny, and the Caribbean
- Peak in September 2008 at $880/metric ton of ammonia
- $530 average for the calendar year 2014
- Supported by corn derived ethanol mandates in the US, increased Chinese/Indian demand, etc.

Source: U.S. Geological Survey
Effects on Worldwide Production?

- Case A produces ~58,700 metric tons NH₃ / year
- Case B produces ~48,667 metric tons NH₃ / year
- 144 million metric tons produced worldwide in 2014
- Each case study is <0.04% of the worldwide total ammonia produced
- Worldwide consumption projected to 167 million metric tons/year in 2018

World Ammonia Production, million tons/year (2015-2018 est.)

© 2018 Bechtel Hydrocarbon Technology Solutions, Inc. | 30

Source: U.S. Geological Survey
Proven Experience

<table>
<thead>
<tr>
<th>Company</th>
<th>Location</th>
<th>Capacity</th>
<th>Startup Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flint Hills</td>
<td>St. Paul, Minnesota, USA</td>
<td>500</td>
<td>TBD</td>
</tr>
<tr>
<td>Chevron</td>
<td>(Revamp)</td>
<td>500</td>
<td>2010</td>
</tr>
<tr>
<td>SynCrude Canada</td>
<td>Fort McMurray, Alberta, Canada</td>
<td>1,565</td>
<td>2006</td>
</tr>
<tr>
<td>Shell</td>
<td>Colorado, USA</td>
<td>2-100</td>
<td>2005</td>
</tr>
<tr>
<td>Shell</td>
<td>Martinez, California, USA</td>
<td>320</td>
<td>1995</td>
</tr>
<tr>
<td>Chinese Petroleum Corporation</td>
<td>Kaohsiung, Taiwan</td>
<td>70</td>
<td>1992</td>
</tr>
<tr>
<td>Statoil</td>
<td>Mongstad, Norway</td>
<td>295</td>
<td>1989</td>
</tr>
<tr>
<td>Taiyo Oil Company</td>
<td>Kikuma, Japan</td>
<td>140</td>
<td>1988</td>
</tr>
<tr>
<td>Syncrude Canada</td>
<td>Fort McMurray, Alberta, Canada</td>
<td>200</td>
<td>1987</td>
</tr>
<tr>
<td>Chevron</td>
<td>Richmond, California, USA</td>
<td>160</td>
<td>1985</td>
</tr>
<tr>
<td>Tesoro Petroleum Corporation</td>
<td>Martinez, California, USA</td>
<td>280</td>
<td>1983</td>
</tr>
<tr>
<td>Chevron</td>
<td>Pascagoula, Mississippi, USA</td>
<td>285</td>
<td>1983</td>
</tr>
<tr>
<td>Delaware City Refining</td>
<td>Delaware City, Delaware, USA</td>
<td>94</td>
<td>1979</td>
</tr>
<tr>
<td>Suncor Energy</td>
<td>Montreal, Quebec, Canada</td>
<td>250</td>
<td>1978</td>
</tr>
<tr>
<td>Syncrude Canada</td>
<td>Fort McMurray, Alberta, Canada</td>
<td>250</td>
<td>1978</td>
</tr>
<tr>
<td>Fuji Oil Company</td>
<td>Sodegaura, Japan</td>
<td>70</td>
<td>1976</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>Beaumont, Texas, USA</td>
<td>630</td>
<td>1975</td>
</tr>
<tr>
<td>Idemitsu Kosan Company</td>
<td>Himeji, Japan</td>
<td>125</td>
<td>1970</td>
</tr>
<tr>
<td>Chevron</td>
<td>El Segundo, California, USA</td>
<td>260</td>
<td>1970</td>
</tr>
<tr>
<td>Nippon Petroleum Refining</td>
<td>Negishi, Japan</td>
<td>93</td>
<td>1969</td>
</tr>
<tr>
<td>Fuji Oil Company</td>
<td>Sodegaura, Japan</td>
<td>23</td>
<td>1968</td>
</tr>
<tr>
<td>Kuwait National Petroleum</td>
<td>Shuaiba, Kuwait</td>
<td>140</td>
<td>1968</td>
</tr>
<tr>
<td>Chevron</td>
<td>Richmond, California, USA</td>
<td>230</td>
<td>1966</td>
</tr>
</tbody>
</table>
Summary

- Given a sulfur expansion, SWSPlus™ provides superior economics to a traditional SRU train.
- 1 ton of ammonia = 3 tons of sulfur processing capacity
- Allows easy SRU and SWS expansion to higher nitrogen crudes
- Converts a waste stream into a salable product
- SWSPlus™ is Proven Technology in 25+ refineries over 50+ years
 - Configurations
 - Operating philosophies
 - Crude slates
 - Climates
Using SWSPlus™ for Sulfur Capacity Addition

By Charles L. Kimtantas and Martin A. Taylor
ckimtant@bechtel.com & mataylo1@bechtel.com

Bechtel Hydrocarbon Technology Solutions. Inc.
3000 Post Oak Blvd, Houston, Texas 77056