Boron-Based Technology: An Innovative Solution for Resid FCC Unit Performance Improvement
Outline

- Development of BBT Platform
- BoroCat™
- Borotec™
- Boroflex™
Increasing demand for catalysts that provide metals tolerance for optimized FCC unit performance

Nickel, vanadium and iron are present in crude oil

Contaminant nickel present in FCC feed
Global trend towards heavier more contaminated combined FCC feedstock

- During operation, nickel is deposited on the FCC catalyst
- Nickel accumulates especially on the outer surface of the catalyst
- In the FCC reactor, nickel metal catalyzes unwanted side reactions
Improve Nickel Passivation for Resid Operations

Technology Objectives

- Create a new resid catalyst to minimize impact of contaminant Ni
- Improve conventional Ni passivation technologies
 - Specialty alumina – immobility
 - Antimony – operational concern

Typical metal-containing feed porphyrin

Elemental map of Ni on Ecat
A Novel Solution for FCC Refiners

Boron Mobile Under FCC Conditions, Migrates to Ni on the Catalyst

B deters Ni from being reduced to a more detrimental state in the riser
Introducing Boron-Based Technology (BBT)

BBT utilizes a novel chemistry for improved Ni passivation versus current technologies

- Boron migrates within the catalyst by solid state diffusion to passivate nickel
- Passivation of Ni confirmed by multiple spectroscopy studies

Performance Benefits

- Reduction in H$_2$ and delta coke
Nickel Passivation with BBT Confirmed in Multiple Lab Studies

<table>
<thead>
<tr>
<th></th>
<th>CPS (3000 ppm Ni; 3000 ppm V)</th>
<th>CMDU (3000 ppm Ni; 3000 ppm V)</th>
<th>Conventional Steam Deactivation (3000 ppm Ni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2 %</td>
<td>-27</td>
<td>-27</td>
<td>-25</td>
</tr>
<tr>
<td>Gasoline + LCO %</td>
<td>+0.8</td>
<td>+2.0</td>
<td>+4.0</td>
</tr>
<tr>
<td>Coke %</td>
<td>-22</td>
<td>-13</td>
<td>-35%</td>
</tr>
</tbody>
</table>
BBT Passivates Nickel without Increasing NOx

Antimony use is not always possible in locations under strict NOx regulations.

Unlike antimony, BBT achieves Ni passivation without any increase in NOx

Third Party Lab Testing Results

Catalyst Blend with 1% wt CO promoter

<table>
<thead>
<tr>
<th></th>
<th>Relative NOx Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Passivator</td>
<td></td>
</tr>
<tr>
<td>Antimony Passivator</td>
<td></td>
</tr>
<tr>
<td>BBT without antimony</td>
<td></td>
</tr>
</tbody>
</table>
Products from the BBT Platform

- **Borotec™**: Mild-resid; feed flexibility
- **BoroCat™**: Resid FCC
- **Boroflex™**: Improved bottoms upgrading

FCC unit operations
- Ecat Nickel
 - 800 ppm
 - 1500 ppm

Unit objective
- Maximum conversion
- Improved bottoms upgrading
Outline

- Development of BBT Platform
- BoroCat™
- Borotec™
- Boroflex™
BoroCat™ – An innovative solution for nickel passivation in resid FCC units

- BoroCat is the first resid-FCC catalyst based on BASF's novel BBT platform.
- BoroCat is engineered to provide maximum metals passivation and superior product yields.
- BBT technology is used to passivate nickel and a proprietary pore architecture is used to minimize diffusional limitations of heavy feed molecules.

In multiple commercial trials, BoroCat reduced H₂ yield, reduced delta coke, increased gasoline yield and increased bottom upgrading.
Multiple Award Winning Catalyst Technology

Contenders:

Best Catalyst Technology

- BoroCat novel passivation FCC Catalyst — BASF
- EnviCat nitrous oxide abatement — Clariant International Ltd.
- ODH-Et oxidative dehydrogenation of ethane — Mexican Petroleum Institute
- Molecular Highway bottoms upgrading — Rive Technology
BoroCat Commercial FCC Trial #1

- Resid unit in Europe
 - API gravity: 24 – 27
 - Ecat Ni: 2700 – 3300 ppm
 - Ecat V: 1500 – 2000 ppm
- Switched to BoroCat for max gasoline yield

Result: Improved yield selectivity with lower H₂ and delta coke
BoroCat Reduced Operating Hydrogen

- Operating H_2/CH_4 decreased with BoroCat at constant equivalent Ni
Operating Gasoline Selectivity Improvement with BoroCat

- Increase in operating gasoline yield with BoroCat at constant conversion
BoroCat Increases Gasoline and Unit Profitability

- +3% LPG and gasoline yields, higher conversion
- 26% reduction of unwanted hydrogen
- 16% coke reduction

Profitability improvement in line with customers’ expectation
Outline

- Development of BBT Platform
- BoroCat™
- Borotec™
- Boroflex™
Borotec Development

- Applies what made BoroCat™ successful for moderate metals levels
- High conversion, with good tolerance to metals, especially Nickel
- Testing shows vs. gasoil catalyst lower H_2 and delta coke, with improved liquid yield and LCO/BOT yield
 - CMDU Deactivation with 1,000 Ni & 1,500 V

![Graph showing Delta Yield at wt% Coke = 10]
Borotec Application

Borotec is optimal for high conversion, moderate resid feed applications with higher nickel level. Applications include:

- Units processing mild, moderate or hydrotreated resid feeds
- Unit processing variable feed quality needing flexibility with metals passivation as fresh nickel is most detrimental
- Ecat nickel levels 800-2,000ppm
- FCC units requiring metals passivation for lower hydrogen and delta coke
- FCC units desiring high conversion for improved liquid yields
Borotec Competitive Trial gives 0.23 $/bbl Uplift

- Better coke selectivity
- High activity at comparable V and Na levels
- Higher LCO/Bottoms
- Improved C3= and C4= olefin yield (after catalyst optimization for LPG= with a light olefins additive)

While the initial Borotec gave high performance exceeding that of the competitive catalyst, BASF was able to further optimize the catalyst to give higher C3= and C4= resulting in 23 cents/bbl profit improvement over the competitive catalyst.
Outline

- Development of BBT Platform
- BoroCat™
- Borotec™
- Boroflex™
Boroflex: Boron based technology for Bottoms Upgrading and Distillate Maximization

Boroflex uses the latest in metals passivation technology along with a coke-selective matrix to provide bottoms upgrading for residue feedstocks.

- FCC units processing resid feedstocks looking to reduce slurry yield
- FCC units wanting higher yields of valuable liquid products of LPG (liquefied petroleum gas) olefins, gasoline and distillate products
- FCC units with severe metals contamination concerns targeting lower hydrogen and coke
Boroflex Commercial FCC Trial #1

- Resid FCC unit in North America
- Feed: CCR 2-3% ; Ecat Ni 2,500-3,000 ppm; Ecat V: 1,000-1,500 ppm
- Incumbent catalyst: BASF’s Stamina
- Objectives:
 - Lower H_2 and dry gas through improved Ni passivation
 - Increase gasoline yield
 - Maintain optimum bottoms upgrading
Despite higher content of fresh, more active Ni, H₂ yield was reduced
Boroflex Trial: Operating gasoline yield increased

- C4 olefinicity maintained (butylenes selectivity valuable!)
- Gasoline make and LCO selectivity improved
Boroflex Trial: High level of bottoms upgrading

- High level of bottoms upgrading
- Coke remained fairly consistent

![Slurry vs. Conversion](image)

![Coke](image)
Increase in unit profitability from Boroflex

- Using normalized operating yields and KBC modeling, refinery saw an overall $0.23/bbl increase in profitability by switching to Boroflex.
- Unit saw similar conclusions in ACE yields (with even larger magnitude).

<table>
<thead>
<tr>
<th>Operating Yield</th>
<th>Overall Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>-0.08</td>
</tr>
<tr>
<td>C₃</td>
<td>0.02</td>
</tr>
<tr>
<td>C₃≤</td>
<td>0.09</td>
</tr>
<tr>
<td>nC₄</td>
<td>0.03</td>
</tr>
<tr>
<td>iC₄</td>
<td>0.13</td>
</tr>
<tr>
<td>C₄≤</td>
<td>0.15</td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.65</td>
</tr>
<tr>
<td>LCO</td>
<td>-0.38</td>
</tr>
<tr>
<td>Bottoms</td>
<td>-0.47</td>
</tr>
<tr>
<td>Coke</td>
<td>-0.12</td>
</tr>
<tr>
<td>Total C₃+ Yield</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Boroflex Commercial Trial Part 2

- Resid FCC unit in North America
- Boroflex vs. another supplier’s premium catalyst with new/innovative bottoms upgrading technology
- No olefins additive
- Objectives:
 - Lower H\textsubscript{2} and dry gas
 - Improved olefin selectivity holding overall LPG constant
 - Increase gasoline yield
 - Improve bottoms upgrading
Boroflex Commercial Trial Part 2

- Boroflex gave superior yields
 - H₂ and dry gas decreased
 - Propane decreased (positive for the LPG limited unit)
 - Olefinicity increased
 - Gasoline increased
 - Bottoms decreased, LCO/BOT increased

- Boroflex saw significant improvement in all yields for 0.97-1.30 $/bbl (seasonal)

<table>
<thead>
<tr>
<th>Operating Yield (wt%)</th>
<th>Supplier A</th>
<th>Boroflex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Gas</td>
<td>2.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Propane</td>
<td>2.1</td>
<td>1.6</td>
</tr>
<tr>
<td>Propylene</td>
<td>7.7</td>
<td>8.2</td>
</tr>
<tr>
<td>n-Butane</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Iso-Butane</td>
<td>4.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Total Butylene</td>
<td>4.2</td>
<td>5.5</td>
</tr>
<tr>
<td>LPG</td>
<td>19.6</td>
<td>20.8</td>
</tr>
<tr>
<td>Gasoline</td>
<td>39.3</td>
<td>39.9</td>
</tr>
<tr>
<td>LCO</td>
<td>19.0</td>
<td>21.2</td>
</tr>
<tr>
<td>Bottoms</td>
<td>13.6</td>
<td>9.5</td>
</tr>
<tr>
<td>LCO/BOT</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>Coke</td>
<td>5.8</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Conclusions and Path Forward

BBT platform uses the novel chemistry of boron for passivation of contaminant Ni

- Increased FCC unit profitability & yield selectivity
- No increase in unit NOx emissions

Borotec
- Ecat Ni between 800 – 2,000 ppm
- Target objective: maximum conversion, flexible crude slate
- Used in multiple refineries worldwide
- Flexible for changing crude slate or mild resid feed for improved yields
- 0.23 $/bbl benefit shown

BoroCat
- Ecat Ni exceeding 1,500 ppm
- Target objective: maximum conversion resid feeds
- Used in multiple refineries worldwide
- Maximize liquid yields with lower hydrogen and delta coke
- Up to 0.38 $/bbl benefit shown

Boroflex
- Ecat Ni exceeding 1,500 ppm
- Target objective: maximum bottoms upgrading resid feeds
- Multiple North American refinery trials
- Best bottoms upgrading with lower hydrogen and coke
- Up to 1.30 $/bbl benefit shown
We create chemistry