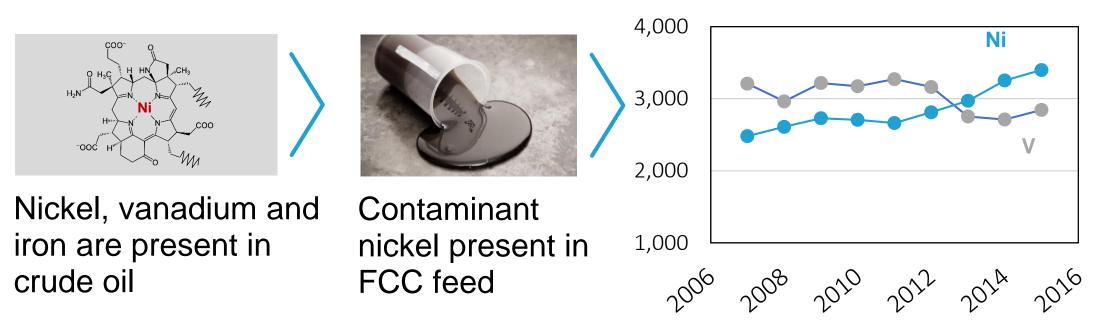


Boron-Based Technology: An Innovative Solution for Resid FCC Unit Performance Improvement

Development of BBT Platform

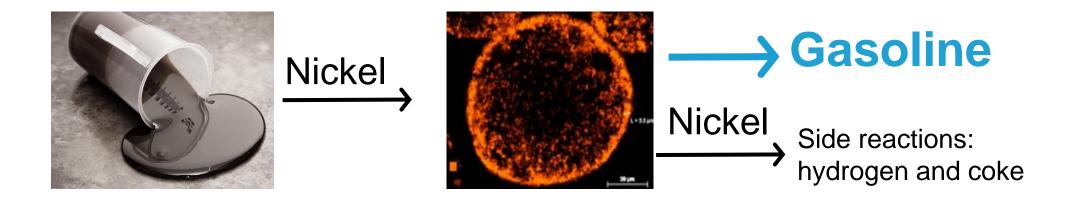
■ BoroCat[™]

■ Borotec[™]


■ Boroflex[™]

Shift in crude oil quality

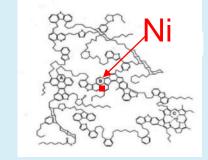
Trend in contaminant metals

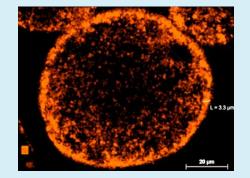

Metal on equilibrium catalyst (Ecat) [ppm]

Increasing demand for catalysts that provide metals tolerance for optimized FCC unit performance

Global trend towards heavier more contaminated combined FCC feedstock

During operation, nickel is deposited on the FCC catalyst

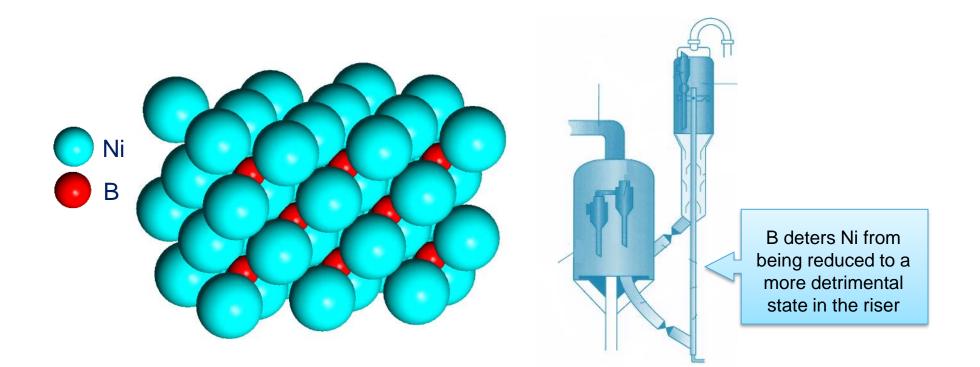

- Nickel accumulates especially on the outer surface of the catalyst
- In the FCC reactor, nickel metal catalyzes unwanted side reactions


Improve Nickel Passivation for Resid Operations

Technology Objectives

- Create a new resid catalyst to minimize impact of contaminant Ni
- Improve conventional Ni passivation technologies
 - Specialty alumina immobility
 - Antimony operational concern

Typical metal-containing feed porphyrin



Elemental map of Ni on Ecat

A Novel Solution for FCC Refiners

Boron Mobile Under FCC Conditions, Migrates to Ni on the Catalyst

Introducing Boron-Based Technology (BBT)

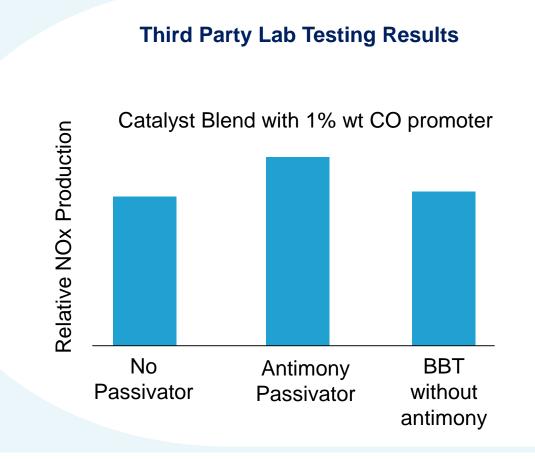
BBT utilizes a novel chemistry for improved Ni passivation versus current technologies

- Boron migrates within the catalyst by solid state diffusion to passivate nickel
- Passivation of Ni confirmed by multiple spectroscopy studies

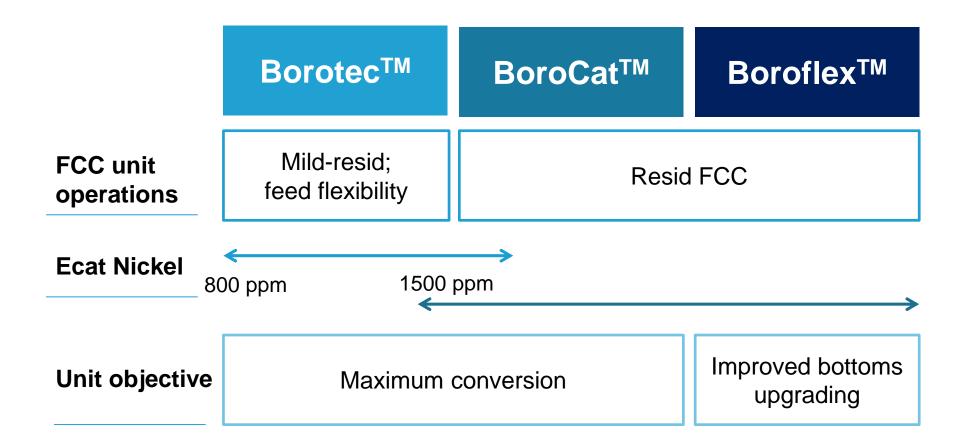
Performance Benefits

Reduction in H₂ and delta coke

Nickel Passivation with BBT Confirmed in Multiple Lab Studies


BBT versus Base Resid Catalyst: Relative Yield Shift Percentage @ 75% Conversion			
	CPS (3000 ppm Ni; 3000 ppm V)	CMDU (3000 ppm Ni; 3000 ppm V)	Conventional Steam Deactivation (3000 ppm Ni)
H ₂ %	-27	-27	-25
Gasoline + LCO %	% +0.8	+2.0	+4.0
Coke %	-22	-13	-35%

BBT Passivates Nickel without Increasing NOx


Antimony use is not always possible in locations under strict NOx regulations.

Unlike antimony, BBT achieves Ni passivation without any increase in NOx

Products from the BBT Platform

- Development of BBT Platform
- BoroCat[™]
- Borotec[™]
- Boroflex[™]

BoroCat[™] – An innovative solution for nickel passivation in resid FCC units

- BoroCat is the first resid-FCC catalyst based on BASF's novel BBT platform.
- BoroCat is engineered to provide maximum metals passivation and superior product yields.
- BBT technology is used to passivate nickel and a proprietary pore architecture is used to minimize diffusional limitations of heavy feed molecules.

In multiple commercial trials, BoroCat reduced H₂ yield, reduced delta coke, increased gasoline yield and increased bottom upgrading

Multiple Award Winning Catalyst Technology

Contenders:

Best Catalyst Technology

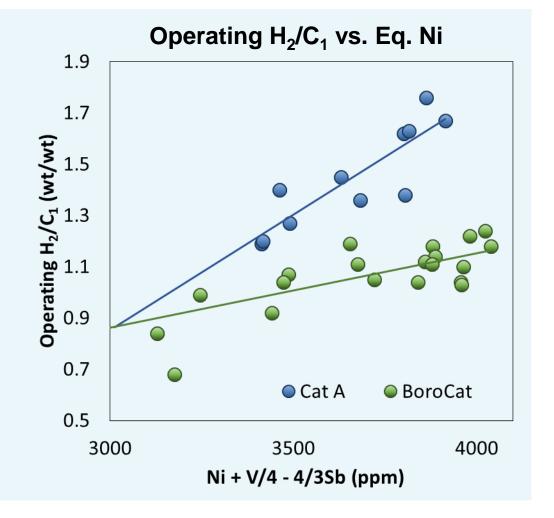
- BoroCat novel passivation FCC Catalyst BASF
- EnviCat nitrous oxide abatement Clariant International Ltd.
- ODH-Et oxidative dehydrognation of ethane Mexican Petroleum Institute
- Molecular Highway bottoms upgrading Rive Technology

2017 Edison Patent Award Winning Patents and Inventors

We create chemistry

BASE Innovation Award **D** - BASE

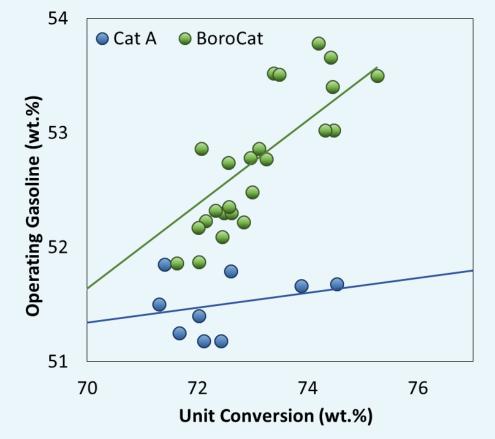
BoroCat Commercial FCC Trial #1


- Resid unit in Europe
 - API gravity: 24 27
 - Ecat Ni: 2700 3300 ppm
 - Ecat V: 1500 2000 ppm
- Switched to BoroCat for max gasoline yield

Result: Improved yield selectivity with lower H₂ and delta coke

BoroCat Reduced Operating Hydrogen

Operating H₂/CH₄ decreased with BoroCat at constant equivalent Ni


BASF We create chemistry

15

Operating Gasoline Selectivity Improvement with BoroCat

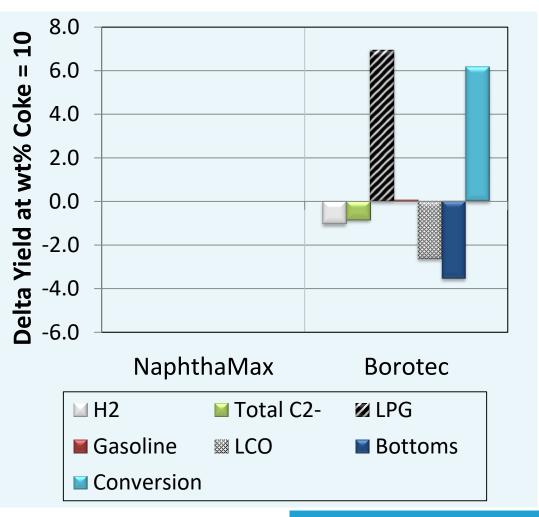
Increase in operating gasoline yield with BoroCat at constant conversion

Operating Gasoline vs. Conversion

BoroCat Increases Gasoline and Unit Profitability

- +3% LPG and gasoline yields, higher conversion
- 26% reduction of unwanted hydrogen
- 16% coke reduction

Profitability improvement in line with customers' expectation



- Development of BBT Platform
- BoroCat[™]
- Borotec[™]
- Boroflex[™]

Borotec Development

- Applies what made BoroCat[™] successful for moderate metals levels
- High conversion, with good tolerance to metals, especially Nickel
- Testing shows vs. gasoil catalyst lower H_2 and delta coke, with improved liquid yield and LCO/BOT yield
 - CMDU Deactivation with 1,000 Ni & 1,500 V

Borotec Application

Borotec is optimal for high conversion, moderate resid feed applications with higher nickel level. Applications include:

Units processing mild, moderate or hydrotreated resid feeds

- Unit processing variable feed quality needing flexibility with metals passivation as fresh nickel is most detrimental
- Ecat nickel levels 800-2,000ppm
- FCC units requiring metals passivation for lower hydrogen and delta coke
- FCC units desiring high conversion for improved liquid yields

Borotec Competitive Trial gives 0.23 \$/bbl Uplift

Better coke selectivity		Competitor	Borotec (Prior to Light Olefins Additive)
High activity at comparable V and Na levels	Conversion, wt.%	80.0	80.5
Higher LCO/Bottoms	LPG, wt%	16.9	17
Improved C3= and C4= olefin yield (after catalyst optimization for LPG= with a light	Gasoline, wt%	54.0	54.5
	LCO, wt.%	14.2	13.9
olefins additive)	Bottoms, wt%	5.9	5.6
	LCO/BOT	2.42	2.48

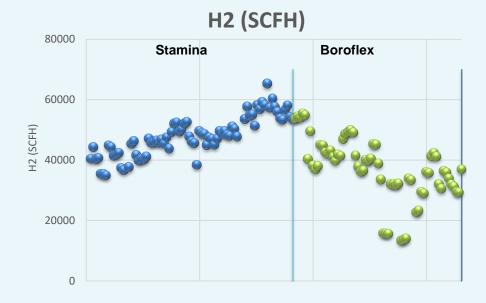
While the initial Borotec gave high performance exceeding that of the competitive catalyst, BASF was able to further optimize the catalyst to give higher C3= and C4= resulting in 23 cents/bbl profit improvement over the competitive catalyst

- Development of BBT Platform
- BoroCat[™]
- Borotec[™]
- Boroflex[™]

Boroflex: Boron based technology for Bottoms Upgrading and Distillate Maximization

Boroflex uses the latest in metals passivation technology along with a coke-selective matrix to provide bottoms upgrading for residue feedstocks.

- FCC units processing resid feedstocks looking to reduce slurry yield
- FCC units wanting higher yields of valuable liquid products of LPG (liquefied petroleum gas) olefins, gasoline and distillate products
- FCC units with severe metals contamination concerns targeting lower hydrogen and coke


Boroflex Commercial FCC Trial #1

- Resid FCC unit in North America
- Feed: CCR 2-3% ; Ecat Ni 2,500-3,000 ppm; Ecat V: 1,000-1,500 ppm
- Incumbent catalyst: BASF's Stamina
- Objectives:
 - Lower H₂ and dry gas through improved Ni passivation
 - Increase gasoline yield
 - Maintain optimum bottoms upgrading

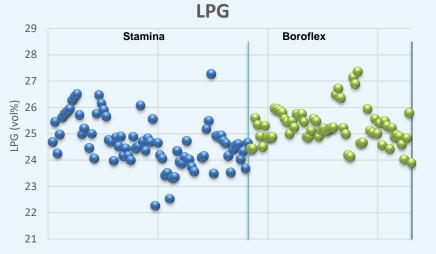
Boroflex Reduced Operating Hydrogen Yield

Despite higher content of fresh, more active Ni, H₂ yield was reduced

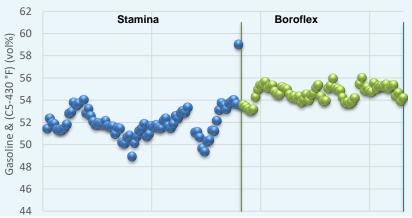
le Boroflex

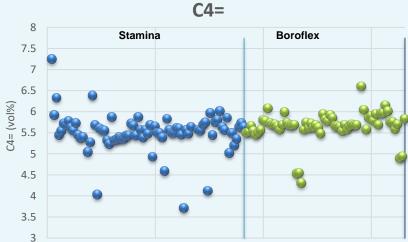
ECat Ni + V/4 - 4/3 Sb (ppm)

Stamina


H2 (SCF/bbl)

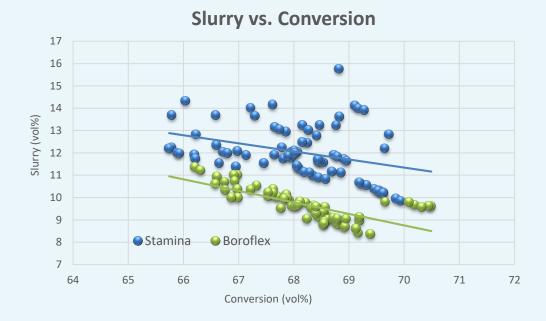
H2 (SCF/bbl) vs. ECat Ni + V/4 - 4/3 Sb

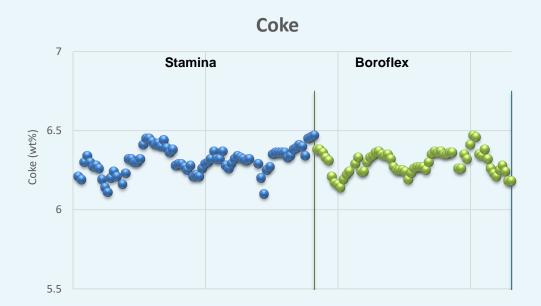



Boroflex Trial: Operating gasoline yield increased

- C4 olefinicity maintained (butylenes selectivity valuable!)
- Gasoline make and LCO selectivity improved

Total Gasoline (C5-430 °F)




USA CONSCIENCE Stamina Boroflex 0.75 0.75 0.65 0.55 0.55 0.45 0.45 0.45

Boroflex Trial: High level of bottoms upgrading

- High level of bottoms upgrading
- Coke remained fairly consistent

Increase in unit profitability from Boroflex

- Using normalized operating yields and KBC modeling, refinery saw an overall \$0.23/bbl increase in profitability by switching to Boroflex
- Unit saw similar conclusions in ACE yields (with even larger magnitude)

Operating Yield	Overall Delta
H ₂	-0.08
C3	0.02
C3=	0.09
nC4	0.03
iC4	0.13
C4=	0.15
Gasoline	0.65
LCO	-0.38
Bottoms	-0.47
Coke	-0.12
Total C3+ Yield	0.23

28

Boroflex Commercial Trial Part 2

- Resid FCC unit in North America
- Boroflex vs. another supplier's premium catalyst with new/innovative bottoms upgrading technology
- No olefins additive
- Objectives:
 - Lower H₂ and dry gas
 - Improved olefin selectivity holding overall LPG constant
 - Increase gasoline yield
 - Improve bottoms upgrading

Boroflex Commercial Trial Part 2

Boroflex gave	superior yields
---------------	-----------------

- H₂ and dry gas decreased
- Propane decreased (positive for the LPG limited unit)
- Olefinicity increased
- Gasoline increased
- Bottoms decreased, LCO/BOT increased
- Boroflex saw significant improvement in all yields for 0.97-1.30 \$/bbl (seasonal)

Operating Yield (wt%)	Supplier A	Boroflex
Dry Gas	2.8	2.5
Propane	2.1	1.6
Propylene	7.7	8.2
n-Butane	1.2	1.3
Iso-Butane	4.4	4.2
Total Butylene	4.2	5.5
LPG	19.6	20.8
Gasoline	39.3	39.9
LCO	19.0	21.2
Bottoms	13.6	9.5
LCO/BOT	1.4	2.2
Coke	5.8	6.0

Conclusions and Path Forward

BBT platform uses the novel chemistry of boron for passivation of contaminant Ni
Increased FCC unit profitability & yield selectivity
No increase in unit NOx emissions

Borotec	BoroCat	Boroflex
Ecat Ni between 800 – 2,000 ppm	Ecat Ni exceeding 1,500 ppm	Ecat Ni exceeding 1,500 ppm
Target objective: maximum conversion, flexible crude slate	Target objective: maximum conversion resid feeds	Target objective: maximum bottoms upgrading resid feeds
Used in multiple refineries worldwide	Used in multiple refineries worldwide	Multiple North American refinery trials
Flexible for changing crude slate or mild resid feed for improved yields	Maximize liquid yields with lower hydrogen and delta coke	Best bottoms upgrading with lower hydrogen and coke
0.23 \$/bbl benefit shown	Up to 0.38 \$/bbl benefit shown	Up to 1.30 \$/bbl benefit shown
		D - BASF

We create chemistry

BASE We create chemistry