

Understanding Installation of Steam Tracing for Long-Term Application Success

- Thomas Perry QMax
- Carson Hannah QMax

Best Overall Solutions for Pipe Tracing

Most Options for Equipment Jacketing

Most Effective Systems for Tank Heating

Steam Heating Systems for Piping

Is this a good Steam Tracing System installation?

Is this a good Steam Tracing System installation?

Is this a good Steam Tracing System installation?

Today we'll look at:

- Conduction Heat Transfer
- What is Heat Transfer Compound (HTC)
- Test Results Melting Sulfur w/ Steam Tracing using HTC
 - Steam Tracing Designs Tested
 - Simulating Varying HTC Thicknesses
 - Melt-Out Test Results
 - Lessons Learned

Heat Transfer 101

- Conduction
- Convection
- Radiation

Conductive Heat Transfer

• Q = UAdT, U = k/1

Conductive Heat Transfer

• Q = UAdT, U = k/1

<u>Poor "k"</u> = Excellent Heat Transfer Very Small "1"

What is Heat Transfer Compound

Heat Transfer Compound (HTC) is used to bridge the thermal gap between two parts (in this case, pipe and conductive tracing).

HTC contains graphite and one or more binder components which are formulated for different applications.

Heat Transfer Boundaries of Conductive Steam Tracing

- 1) Film Coefficient of Steam
- 2) Conduction thru Tubing
- **3)** Conduction thru very thin HTC
- 4) Conduction thru Aluminum
- 5) Conduction thru very thin HTC
- 6) Conduction thru Pipe Wall
- 7) Film Coefficient of Process

Purpose of Heat Transfer Compound

Bottom Line

Heat Transfer Compound has a poor "k" so it MUST be used in very thin layers to achieve good heat transfer.

The HTC must also stay in place for long-term success.

How does this affect the thermal performance?

Melt-Out Testing Using Steam Tracing and HTC

Steam Tracing Designs Tested

CST (Carbon Steel Tracing)

Maximize the heat transfer from a contoured, carbon steel tube to the pipe wall / process

Minimize the HTC layer between tracing and pipe

Steam Tracing Designs Tested

FTS (Fluid Tracing System)

Maximize the heat transfer from a single tube into pipe wall / process using highly conductive aluminum

Minimize the HTC layer between tracing and pipe

Simulating Varying HTC Thicknesses

Field Effects on Thickness

- Raised Weld Crowns
- Uneven Distribution of HTC
- Air Gaps between pipe & Trace
- Imperfect Fitting/Welding of tracing

Simulating Varying HTC Thicknesses

(3) Different Simulated Gaps

- 1/32 inch (0.031 inch or 0.8 mm)
- 3/32 inch (0.094 inch or 2.4 mm)
- 5/32 inch (0.156 inch or 4.0 mm)

High-Performance Heat Tracing

Melt-Out Test Results FTS channel Table 4: Time to melt sulfur using FTS with various HTC thicknesses				
Test	HTC Layer Thickness (inches)	Time to heat sulfur from 105-248 °F	Tube	
FTS-A	1/32	2 hours, 26 minutes	PROCESS	
FTS-B	3/32	3 hours, 29 minutes	НТС	
FTS-C	5/32	5 hours, 34 minutes		
FTS-D	No HTC – Bare FTS tracer on pipe	4 hours, 36 minutes		

High-Performance Heat Tracing

Melt-Out Test Results

Table 3: Time to melt sulfur using CST with various HTC thicknesses

Test	HTC Layer Thickness (inches)	Time to heat sulfur from 105-248 °F
CST-A	1/32	2 hours, 24 minutes
CST-B	3/32	4 hours, 3 minutes
CST-C	5/32	5 hours, 12 minutes
CST-D	No HTC – Bare CST tracer on pipe	4 hours, 7 minutes

www.qmaxindustries.com

Take-Aways

1) Follow Manufacturers' Guidelines for Installation

2) Training Installers on the purpose and use of Heat Transfer Compound

3) Use a Conductive Steam Tracing System that allows for excellent contact (small layers of HTC)

4) Avoid running Steam Tracing over weld beads

Tight Contact Leads to Long-Term Success

Loose Contact Leads to Failure

Thank you

Thomas Perry Carson Hannah

www.qmaxindustries.com