

State-Of-The-Art Delayed Coking Unheading Technology To Improve Safety During Operation

RefComm® Budapest 2017

IMI Z&J Germany

Reiner Mehr

Content Table I

IMI Z&J Design Evaluation

- **IMI Z&J Standard Supplies**
- **IMI Z&J Auxiliary Equipment**
- **IMI Z&J NEW Compact Footprint Design**
- **IMI Z&J Site Installation**
- **IMI Z&J Maintenance**
- **IMI Z&J TAR results**
- **IMI Z&J Conclusions**
- **IMI Company Key Data**
- **IMI Z&J Product Lines**

Design Evaluation I

IMI Z&J Unheading Technology Design Evaluation

Design Evaluation II

Design Evaluation III

Single Plate Design

Double Disc Design Z&J's Unique Unheading Technology

Design Evaluation IV

Rectangular Plate vs. Disc

Rectangular Plate

- Contact between plate & seat only by springs
- Commonly used in Ethylene service

Innovative Disc

- Double disc design with wedges
- Tightness created between discs & seats by split-wedge & springs in addition to spring loaded upper seat
 - Extended life time

Design Evaluation V

Calculation Model Rectangular Plate

Design Evaluation VI

Calculation Model Disc

warm-up

- coking operation
 - steamout
 - quenching

 - body purge
 - \Rightarrow

2h

3h

- 12h petroleum residue (500 °C) - convection superheated steam (200 °C) - convection cooling water (25 °C) - convection 5h
 - superheated steam (200 °C) convection

superheated steam (200 °C) - convection

Design Evaluation VIII

t1

t4

t2

t3

Design Evaluation XI

IMI Z&J

Deflection Diagram

Ratio of leakage area: 3 (!)

Design Evaluation XII

Rectangular Plate erosion due to excessive leakage

Design Evaluation XIV

 INAI

Critical Engineering

Patented

Design Evaluation XV

Double Disc Multiple Seal & Purge and active mechanical seating

Design Evaluation XVII Sample calculation – Steam consumption

Design Evaluation XVIII Conclusions and Prospects

Conclusions and Prospects of Design Evaluation

Rectangular Plate

- Random temperature distribution
- Very sensitive to thermal distortion
- Areas of excessive leakage
- Apparently no true double block capability
- High steam consumption & energy costs
- High erosion & maintenance costs

Innovative Z&J Disc Design

- Equal temperature distribution
- Insensitive to thermal distortion
- Area of leakage 3 x smaller
- True *double block* capability
- Reduced steam consumption & energy costs
- Low erosion & maintenance costs
- Less downtime

11 Z&J

IMI Z&J Revamp Solution for Bottom Unheading

IMI Z&J Compact Footprint Design (CFD)

Compact Footprint Design IV

Sealing Principle

Critical Engineering

Compact Footprint Design V

IMI Z&J Bottom Unheading Device and IMI Z&J Compact Bottom Unheading Device common features

1. General		
Product Name	IMI Z&J Bottom Unheading Device	IMI Z&J Compact Bottom Unheading Device
Size NPS	NPS 60"	
Design	per ASME section VIII Div. 1, 2	
Actuator types	Electric or Hydraulic	
2. Conditions, Technical Performance		
Design		
Product Type	Double Disc Through Conduit	
Full Bore	Yes	
On-Off Service	Yes	
Body	Bonnet - Body - Bonnet	
Sealing System	Double Block & Purge	
Seating Force activation	Split-Wedge-Ball Arrangement	Preloaded Disc Arrangement
Multiple Seal	Yes	
Leakage Rate	API 598	
Maintenance		
On-Deck Maintanance System	Yes	
On-Deck Seat Replacement (upper Seat)	Yes	
On-Deck Disc Replacement	Yes	
3. Dimensions of Valve		
Weight incl. Actuator (Compact Electric)	135600 lbs / 61500 kg	88 000 lbs / 40 000 kg
Length	390" / 9900 mm	388" / 9850 mm
Width	115" / 2920 mm	101" / 2560 mm
Height	51" / 1308 mm	37" / 950 mm
Face-to-face	51" / 1308 mm	31" / 790 mm

Compact Footprint Design VI

 $\mathbf{I}\mathbf{M}$

Critical Engineering

Compact Footprint Design VII

Z&J's Compact BUD Design

- Compact Footprint Low weight
- Real Double Block and Purge Functionality
- => Reduced steam consumption => energy savings => safe environments
- => Less erosion => less maintenance => less downtime
- □ Easy Inspection / maintenance on deck Valve remains connected to drum

Preferred choice for DC Revamp

- Easy to combine with / integrate into existing installations
- Easy to operate in combination with all existing feed systems

Critical Engineering

Compact Footprint Design VIII

Site Installation I

Typical Site Installation – Compact Hydraulic Actuator

Site Installation II

IMI Z&J Bottom Unheading Site Installation

Site Installation IV

Z

IMI

IMI Z&J Bottom Unheading in Operation

Maintenance I

Operating position

Inspection position

Maintenance can be performed while unheading valve remains assembled. No need to remove valve bonnets!

28

Maintenance II

Operation Position -> Maintenance Position

- Remove all piping, tubing and wiring from the Bottom Unheading Valve and its actuator
- Block all constant hangers. For detailed information observe supplementary manual
- Support the discharge chute, for example by means of hydraulic jacks
- Remove bolting of chute

I Z&J

- Lower the chute and let it rest on wooden beams. Close the chute opening by means of cover / lid.
- Support the valve weight by means of equally arranged hydraulic jacks (only if unheading deck is able to bear the load) or chain hoist between I-beams and valve

Maintenance VI

Displacement of Seat Ring Arrangement / Upper Disc

Maintenance VIII

Displacement of Seat Ring Arrangement / Upper Disc

Maintenance IX

Displacement of Seat Ring Arrangement / Upper Disc

Maintenance XV

Maintenance

- Easy access from top
 - Seat-Ring-Insert
 - Upper Disc
 - Lower Disc
- Removal of bonnets is <u>NOT</u> required

TAR BP Oil Castellon, Castellon, Spain I

- End-customer: BP Oil Castellon
- Site: Castellon
- Country: Spain
- Installed equipment: 2 x 36" TUD el. & 2 x 60" BUD hyd.
- Commissioned: Nov. 2008 Jan. 2009
- □ 1st TAR: May/June 2012 (TAR interval extended from 4 to 5-6 years)
- 2nd TAR planned: Oct. 2017 Results:
 - Extremely low contamination
 - No scratches and cracks on sealing ring and disc
 - No exchange of any cup springs required (recommended to change only after appr. 8-10 years)
 - □ No repair works on purge system required

TAR BP Oil Castellon, Castellon, Spain II

TAR BP Oil Castellon, Castellon, Spain III

TAR BP Oil Castellon, Castellon, Spain IV

TAR BP Oil Castellon, Castellon, Spain V

TAR Statoil, Mongstad, Norway I

- End-customer: Statoil Hydro
- Site: Mongstad
- Country: Norway
- □ Installed equipment: 2 x 36" TUD el. & 2 x 60" BUD el. (single spindle)
- Commissioned: 2012 (Nov.)
- □ 1st TAR: Sept./Oct. 2016
- □ 2nd TAR planned: 2021/2022 (TAR interval extended from 4 to 6 years)
- Results:
 - Extremely low contamination
 - □ No scratches and cracks on sealing ring and disc
 - No exchange of any cup springs required (recommended to change only after appr. 8-10 years)
 - □ No repair works on purge system required
 - On BUD spindle and drive nut were still in excellent condition (recommended to change only after appr. 5-6 years)

TAR Statoil, Mongstad, Norway II

TAR Statoil, Mongstad, Norway III

Conclusions I

Design

✓ Per ASME Section VIII Div. 1, 2

Leakage rate

✓ Full compliance with API 598

Safety

- Fully remote operation, no operator on deck during unheading
- True double block & purge 2 independent discs provide individual sealing

Efficiency

Cycle time reduction - optimized production output

Conclusions II

Environment

✓ Low to no emissions to atmosphere

Cost Savings

- Extremely low steam consumption
- Minimum downtime
- Lowest maintenance costs

Reliability

- Extremely low steam consumption
- Well proven design
- TARs show excellent results

Company Key Data I IMI plc Group

Critical Engineering (Formerly Severe Service)

(Formerly Fluid Power) Hydronic Engineering (Formerly Indoor Climate)

IMI Z&J Group - Product Lines

More than135 years experience in specific valve design for severe service applications

✓ In-house
 Design,
 Engineering,
 Fabrication

 $\mathsf{I}\mathsf{M}$

Critical Engineering

- Certified Quality
 Management
- ✓ Extensive
 Testing
 Facilities
- ✓ Field & Shop Service

IMI Z&J

THANK YOU!

IMI Z&J Bertramsweg 6 52355 Dueren, Germany

Tel.: (+49) 2421/691-0 Fax: (+49) 2421/691-200 E-mail: postoffice@zjtechnologies.de