INTENSITY AT WORK
SRU REFRACTORY SELECTION

Gareth Maclagan
Sales Representative, Europe & GCC
HarbisonWalker International
Agenda

- Conditions and properties for refractory selection:
 - Reaction Furnace Hot Face Lining
 - Reaction Furnace Backup Lining
 - Condensers & Reactors
 - Sulfur Pit
Conditions

- Normal operating temperatures up to 1500°C, upset conditions can be above 1700°C.
- Typically a reducing atmosphere
- In operation for extended periods of time. Can be years if operated correctly
- Thermal shock can occur during improper operation
RF Hot Face Lining

Refractory Properties for Best Success for the Hot Face

- Creep resistance is most important
- High purity chemistry (<0.3% iron oxide, <0.3% alkalis)
- Some thermal shock resistance can help
Thermal Shock Testing

Cycles to failure
• Low: 1-10
• Average: 10-20
• Good: 20-30
• Excellent: 30-40+
Measuring Creep Resistance

- **ASTCM C16 – Hot Load Test**
 - 0.17MPa, 100hr, 1650°C measure before and after firing
 - <0.5% deformation; <0.3% for best performance
- **DIN 51053 Refractoriness Under Load**
 - 0.2MPa, 1650°C or 1700°C, record temp deformation begins
 - Deformation occurs >1650°C or 1700°C
- **ASTM C832 Creep Under Load**
 - 0.17MPa, 1550°C or 1650°C, 50 or 100 hour hold
 - <0.01% deformation per hour during 20-100 hr (or 20-50)
Creep Testing

ASTM C832
Thermal Expansion and Creep of Refractories Under Load

Heating and Cooling

Customer: HWI
Sample ID: Brick 2
Density (pcf): 190.2
Stress (psi applied cold): 25

Linear Change (%) vs. Temperature (°C)

100 hour creep soak
Creep Testing

ASTM C832
Thermal Expansion and Creep of Refractories Under Load

Creep During Soak

Customer: HWI
Sample ID: Brick 2
Density (pcf): 190.2
Stress (psi applied cold): 25
Creep Temperature: 1650°C

Regression of 20-100hr data = -.0031 % / hr

\[y = -0.0031x + 1.3194 \]
\[R^2 = 0.968 \]
Requirements for Backup Lining

- Max use temp should be 100°C greater than estimated interface temp
- Low Iron (<1.5% iron oxide)
- Decent creep resistance (<0.5% deformation at typical test temp)
RF Backup Lining

IFB or Monolithic?

• **IFB**
 - Provides assured thickness and a smooth surface to build hot face lining
 - No Dry out required, but brick installation is time-intensive
 - IFB will not react with acids that may condense in cool spots

• **Monolithic**
 - Care must be taken to ensure proper thickness.
 - Faster installation, but a dry must be considered
 - Cement-bonded products will react with acids preventing damage to shell
Conditions

- Relatively cool temperatures around 350°C
- Sulfur fires can raise temperatures quickly
- Refilling catalyst can cause mechanical damage to refractory

Requirements

- Cold Crushing Strength: >7.5MPa (after 815°C)
- Density 1250-1450kg/m³
- Some areas may require a more dense product with less insulating value, but greater strength
- Other areas may require even lighter, more insulating refractory with less strength
Sulfur Pit

Conditions

• Molten sulfur between 120°C
• Sulfur mixing with water vapor can create sulfuric acid

Requirements

• Does not require high-temp materials
 - Colloidal silica bonded, 99% silica
 - Calcium silicate (Portland cement) bonded
 - Alkali silicate bonded
• Acid resistant
 - ExxonMobil Quick Acid Test
Why?
THANK YOU