Roy Niekerk, B.Sc.
Strategic Development Director, Oil & Gas, Kelvion

WELDED PLATE-BLOCK HEAT EXCHANGERS IN AMINE SYSTEMS AND SWS
TABLE OF CONTENT

4. Heat Exchanger Positions in Amine Systems
5. Technology Choice in many Amine Systems
6. What can go wrong with P&FHE in Amine Systems?
7. Welded Plate Block Heat Exchangers – a robust alternative
8. K°Bloc Baffle
9. K°Bloc – STD plates material
10. US Refinery Reference
11. Hydrojetting K°Bloc
12. Ultrasonic bath cleaning
13. Sparing philosophy
14. WPBHE as Amine Reboiler
15. Advantages WPBHE Amine Reboiler
16. WPBHE Reboiler – some guidelines
17. Business case for floating applications
18. Bulgaria Refinery Reference
19. Initial Process Design – Key values
20. Topics for international standards
21. Summary

REFCOMM Conference
Budapest 2017
October 2017
HEAT EXCHANGER POSITIONS IN AMINE SYSTEM

- ABSORBER
- SOUR GAS
- LEAN COOLER
- FLASH GAS
- LEAN | RICH INTERCHANGER
- REBOILER
- STRIPPER
- CONDENSER
- ACID GAS
- SWEET NATURAL GAS
- SOUR GAS
TECHNOLOGY CHOICE IN MANY AMINE SYSTEMS

- **SHELL & TUBE (S&THE) for:**
 - Regenerator Reboiler (Kettle or Themosyphon)
 - Overhead condenser (when water cooled)
 - Or Aircooler

- **PLATE & FRAME HEAT EXCHANGER (P&FHE) for:**
 - Lean Rich Amine Exchanger
 - Lean Amine Cooler (when water cooled)
 - Or Aircooler

- **P&FHE International standard API 667**
 (under development) replacing API 662 part 2

- Experience with P&FHE?
WHAT CAN GO WRONG WITH P&FHE IN AMINE SYSTEMS?

- Purchase of wrong incompatible gaskets
- Wrong glueing:
 - Cold glueing was done although hot oven curing was required
- Many sites have experienced leakage issues with P&FHE

Paint is peeling off the pipe
WELDED PLATE-BLOCK HEAT EXCHANGER: A ROBUST ALTERNATIVE

- Up to 350°C design temperature
- Up to 42 barg design pressure
- Up to 860 m² HTA
- Totally accessible for inspections and maintenance
- Compliant to the main international PV Codes and Standards
- API 810 under development
K°BLOC - BAFFLE

- Countercurrent flow approach by many cross passes
- Temperature approach down to 5 °C
K*BLOC – STD PLATES MATERIAL

<table>
<thead>
<tr>
<th>DIN</th>
<th>AISI</th>
<th>TRADE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4306</td>
<td>AISI 304L</td>
<td></td>
</tr>
<tr>
<td>1.4404</td>
<td>AISI 316L</td>
<td></td>
</tr>
<tr>
<td>1.4547</td>
<td>AISI S31254</td>
<td>SMO 254</td>
</tr>
<tr>
<td>1.4539</td>
<td>AISI 904L</td>
<td></td>
</tr>
<tr>
<td>2.4068</td>
<td>AISI N02201</td>
<td>Nickel 201</td>
</tr>
<tr>
<td>2.4602</td>
<td>AISI N06022</td>
<td>Alloy C22</td>
</tr>
<tr>
<td>2.4675</td>
<td>AISI N06200</td>
<td>Alloy C2000</td>
</tr>
<tr>
<td>2.4819</td>
<td>AISI N10276</td>
<td>Alloy C276</td>
</tr>
<tr>
<td>3.7025</td>
<td>AISI B265 Gr1</td>
<td>Titan Gr.1</td>
</tr>
</tbody>
</table>
REFINERY IN USA

- Refinery in USA
- 3 units BT50-250
- with AISI304L plates
- Lean-rich Amine Exchanger
- Design P: 13.8 barg (200 PSIG)
- Design T: 177°C (350°F)
HYDROBLASTING K°BLOC
ULTRASONIC BATH CLEANING

- Tank filled with cleaning/degreasing solution (typically aqueous based)
- Transducers create ‘ultrasonic waves’ in the liquid medium (20 – 50 KHz)
- Cavitation ‘bubbles’
- Cleaning occurs due to two separate actions:
 - Dissolution of the contaminant in the solution through the continuous removal of any saturated solvent layer
 - Displacement and removal of loosely held contaminants
- Equipment is removed and rinsed to remove any loose residue and cleaning agent
EXAMPLE: INSTALLATION OF 3 x 50% (2 ONLINE, 1 SPARE)

- Because of fouling performance decreases.
- Operation decides to put 3rd unit online. What happens?

UA FACTOR
- OHTC goes down, Reynolds decreases with factor 2/3 and film coefficient decreases roughly with factor (2/3)^0.7 = 0.75
- Area increases factor 3/2.
- U*A is increased with 3/2 * 0.75 = 1.125, or an improvement of 12.5%

SHEAR STRESS
Assuming turbulent flow, the pressure drop goes down with a factor (2/3)^2 = 0.44 and therefore also your shear stress goes down with factor 0.44

RESULT: increased fouling rate ► soon performance will be even worse
WBPHE AS AMINE REBOILER

- Block placed horizontally
- Channels vertical
- Thermosyphon principle
- Minimum turndown ~ 50%

Once-through type reboiler

Recirculating type reboiler
ADVANTAGES WPBHE AMINE REBOILER

- Smaller footprint

- Smaller holdup volume leading to:
 - Lower operating weight than S&THE
 - Lower amine inventory
 - Shorter residence time, hence less amine degradation

- Lower weight than S&THE and therefore easier handling in maintenance activities

- Lower CAPEX than S&THE (~ 50%)
WPBHE REBOILER – SOME GUIDELINES

- WPBHE can work on higher vapor quality than S&THE – up to 15% (w/w) outlet quality is very feasible
- Make sure vendor provides sufficient review data
 - Pressure drop breakdown
 - Amine recirculation rate
 - Area
 - Plate grouping
 - etc.
- Assess all design cases and simulate these in their process-controlled condition
 - What is the steam pressure in min. turndown and clean condition?
 - What are the thermosiphon flow regimes in this condition?
- Combination of steam pressure and steam level control is advised
Business Case for Floating Application

Influence on Topsides Module When Replacing S&THE by a WPBHE Reboiler
(Unfortunately capacity data cannot be shared)

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>~50% reduction in equipment wt. vs S&T. Total module wt. savings of 250 tons</td>
</tr>
<tr>
<td>CAPEX</td>
<td>~50% reduction (FOB). Savings of ~$7M module cost (EDM 2014)</td>
</tr>
<tr>
<td>Installed vol. size</td>
<td>~30% reduction</td>
</tr>
<tr>
<td>O&M</td>
<td>Increased options for equipment lifting e.g.:</td>
</tr>
<tr>
<td></td>
<td>• Lifting options include blue sky access & lifting by means of pedestal crane (current)</td>
</tr>
<tr>
<td></td>
<td>• Move with local beams over the deck towards the ‘maintenance ally’</td>
</tr>
<tr>
<td>Performance</td>
<td>Lower likelihood of fouling due to less residence time and hence solvent degradation and higher velocities.</td>
</tr>
</tbody>
</table>
REFINERY IN BULGARIA

- Installed beginning 2015
- BT-75-150H
- Heat transfer area of 126.5 m²
- Plate material 316L.
- Capacity is 7.04 MW
- Overall heat transfer coefficient is 2449 W/m².K
INITIAL PROCESS DESIGN – KEY VALUES

- Typical Heat Transfer Coefficients for WPBHE

<table>
<thead>
<tr>
<th>Service</th>
<th>OHTC (W/m2.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean / Rich Amine Exchanger</td>
<td>2000</td>
</tr>
<tr>
<td>Lean Amine Cooler</td>
<td>1200</td>
</tr>
<tr>
<td>Condenser</td>
<td>1500</td>
</tr>
<tr>
<td>Reboiler</td>
<td>2000</td>
</tr>
</tbody>
</table>

- CAPEX of WPBHE approx. factor 3-4 of P&FHE
- Maximum heat transfer area WPBHE 860 m² per unit
- L/R Exchanger dP 3 bar for reaching 75 Pa shear stress
- Min temp. approach 10 °C
- Reboiler – define max. skin temperature solvent degradation
TOPICS FOR INTERNATIONAL STANDARDS

- Maximum temperature difference process steams (100 °C)
- Temperature changes max. 60 °C per hour
- Maximum velocity head
- Fouling margin guidelines
- Shear stress guidelines
- Welding requirements
- Nozzle load requirements
- Testing and inspection requirements
TO SUMMARIZE...

- Operating sites have experienced leakages with Plate & Frame Heat Exchangers
- Welded Plate-Block Heat Exchangers (WPBHE) are a more robust, gasket-free alternative
- Number of references is growing
- Best practices for cleaning WPBHE exists
- International standards are being developed (API 810)
- There is a business case for WPBHE as Amine Reboiler
Roy Niekerk
Strategic Development Director
Global Market Oil & Gas
Kelvion B.V.

E-Mail: roy.niekerk@kelvion.com
Tel: +31 6 50 879 284
HEAT EXCHANGER POSITIONS IN AMINE SYSTEM

- ABSORBER
- SOUR GAS
- SWEET NATURAL GAS
- LEAN COOLER
- FLASH GAS
- LEAN | RICH INTERCHANGER
- STRIPPER
- REBOILER
- CONDENSER
- ACID GAS