

SAFETY SEMINAR Rio de Janeiro, Brazil - August 3-7, 2009

Using HAZOP and LOPA Methodologies to Improve Safety in the Coke Drums Cycles

Authors:

Gilsa Pacheco Monteiro Francisco Carlos da Costa Barros Edson Romano Marins Marcelo Teixeira Halasz

The Coke Drum Switching

Step	Duration (Hours)
Filling	20.0
Purge with steam	1.5
Quench	6.0
Drain	1.5
Unhead	1.0
Decoke	3.0
Rehead and Test	2.0
Warm-up	5.0

The Problem:

"The batch stage of the operation (drum switching and coke cutting) presents unique hazards and is responsible for most of the serious accidentes attributed to DCUs".

(US EPA and US OSHA, 2003) Chemical Safety Alert – "Hazards of Delayed Coker Unit (DCU) Operations"

Why does drum switching create unique hazards, resulting in relatively frequent and serious accidents?

•The batch operations involve a series of opening and closing of valves by the operators;

•The high frequency of the drum sequence contributes to increase the likelihood of a human error.

•The inadvertent valve operation can lead to loss of containment scenarios with: release of hydrocarbon from an in-service or open drum to atmosphere, fire, release of H2S.

• **High operator exposure** during drum sequence.

Risk of operating:

- •The wrong valve on the right drum
- •The right valve on the wrong drum
 - (A unit with more than one pair of drums presents even more risks.)

The Goal:

Improve operator safety,

reducing the risk of loss of

containment!

How?

How to improve safety in the coke drums cycles?

•With these logics, some conditions must be met to allow a valve to be opened or closed.

•These conditions can be based either on other valves positions or on process parameter values (e.g. a permissive logic where the coke drum pressure must be lower than a pre-determined value to allow a valve to open).

• All normally operated sequence valves are automated and the instrumentation allows to verify valves position.

How to prevent inadvertent valve operations during drum sequence?

Permissive Logics Matrix

Valves and Instruments Valve Command	Drilling Stem (Decoking)	HV-001A	HV-002A	HV-003A	HV-004A	HV-007A	HV-008A	HV-009A /010A / 027A	PT – 016A
Open HV-002A				0	0	C	С	С	
Open HV-007A		В	С	С	С			0	< 9.8 kPa
Close HV-007A	Out of drum							0	

HV-001 A: Swith valve

HV-002 A: Feed from the heater to coke drum A

HV-003 A: Coke drum overhead to fractionation tower first blockage

HV-004 A: Coke drum overhead to fractionation tower second blockage

HV-007 A: Automatic top head valve

HV-008 A: Automatic bottom head valve

HV-009A / 010A / 027 A: Coke drum vent valves

PT-016 A: Coke drum pressure

Permissive Logics Matrix (PLM)

Valves and Instruments Valve Command	Drilling Stem (Decoking)	HV-001A	HV-002A	HV-003A	HV-004A	HV-007A	A800-VH	HV-009A /010A / 027A	PT - 016A
Open HV-002A				0	0	C	С	С	
Open HV-007A		В	C	С	C			0	< 9.8 kPa
Close HV-007A	Out of drum							0	

HV-001 A: Swith valve

HV-002 A: Feed from the heater to coke drum A

HV-003 A: Coke drum overhead to fractionation tower first blockage

HV-004 A: Coke drum overhead to fractionation tower second blockage

HV-007 A: Automatic top head valve

HV-008 A: Automatic bottom head valve

HV-009A / 010A / 027 A: Coke drum vent valves

PT-016 A: Coke drum pressure

• The starting-point to build this matrix is the set of operational procedures.

•If the procedures have not been prepared due to the initial design phase, procedures from existent and similar units can be used as a basis to build the PLM.

HAZARDS OF DCU BATCH OPERATIONS

• The team responsible to build the matrix included: experienced DCU operators, automation specialists and process engineers involved in the DCU design and operation.

• This matrix was developed during brainstorming sessions.

•What type of incidents these logics can prevent?

•What is the availability or the PFD (Probability to Fail on Demand) acceptable for these logics?

•How safe is enough?

HAZOP and LOPA

COKE DRUMS HAZARD EVALUATION PROCESS – GENERAL VIEW

• This hazard evaluation procedure was applied to a Petrobras DCU during Basic Design Phase.

• Preferably, the experts responsible for the matrix development integrate the HAZOP team.

• Preferably, HAZOP and LOPA are performed in an integrated approach, with only one facilitated session.

Main Results:

• The permissive logics defined in the matrix were assessed using a risk basis through HAZOP;

• The logics that need to be defined as SIF (*Safety Instrumented Function*) were identified with a target SIL (*Safety Integrity Level*).

ETROBRAS

Node – Filling Step: from the switch valve, passing through the coke drum, as far the Fractionator, including: the anti-foaming and quench injection lines.

What does SIL mean?

SIL	AVAILABILITY REQUIRED (%)	PFD (Probability to fail on demand)	RRF = 1/PFD (Risk Reduction Factor)				
1	90,00 - 99,00	0,01 – <mark>0,1</mark>	100 – <mark>10</mark>				
2	99,00 - 99,90	0,001 – <mark>0,01</mark>	1000 — <mark>100</mark>				
3	99,90 - 99,99	0,0001 - 0,001	10.000 - 1000				
4	> 99,99	0,00001 - 0,0001	100.000 - 10.000				

The SIL (Safety Integrity Level) indicates the availability or the PFD of a SIF (Safety Instrumented Function) when a process demand occurs.

E.g.: The acceptance of a SIL 1 means that the risk is sufficiently low that a function with an availability of 90% (or 10% chance of failure) is acceptable.

ETROBRAS

When is SIS used?

A **SIS** (*Safety Instrumented System*) is a combination of sensors, logic solvers and final elements that performs **one or more** *safety instrumented functions* **(SIFs)**, which are installed for the purpose of mitigating the hazard or bringing the process to a safe state in the event of a process upset.

(*) The SIS is used for any process in which the process hazard analysis has determined that the mechanical integrity of the process equipment, the process control, and other protective equipment are insufficient to mitigate the process hazard.

Do I have to apply LOPA to all HAZOP scenarios?

• One way to define the events of interest for LOPA is to determine the scenarios that result in release of hydrocarbon and H_2S from an in-service or open drum during switch and unheading.

Operating Mode	Initiating Events					
	- Vent valve opening					
In-Service	- Drain valve opening					
III-Selvice	- Top head opening					
	- Bottom head opening					
	- Overhead to Fractionator valve opening					
	- Inlet feed valve opening					
Open Drum	- Blowdown valve opening					
	- Condensate Vessel valves opening					

Zachary, B. 2005. *Applying SIS Standards to Coker Processes,* 10th Annual Universal Delayed Coking Seminar, Long Beach, CA, August 1-3, 2005.

• Besides this list, Petrobras Coke drums analysis identified some other initiating events, not necessarily directly related to hydrocarbon relase to atmosphere.

Other Initiating Events Identified with Petrobras Coke Drums Analysis

- Quench water valve opening to an in-service-drum (leading to a coke drum overpressure due to the rapid water vaporization, with potential for loss of containment, hydrocarbon leakage and equipment damage);
- Coke drum inlet feed valve closing (with potential overpressure to the upstream segment, which includes the heater; loss of containment, fire and equipment damage);
- Switch feed valve inadvertently turned to a blocked segment (out-of service drum "B" or coke drums by-pass line to fractionation tower);
- Coke drum to Fractionator valve closing in an in-service drum (with potential drum overpressure);
- Coke drum to Blowdown valve opening in an in-service drum (with potential Blowdown System overpressure);

Other Initiating Events Identified with Petrobras Coke Drums Analysis

- coke cutting operational error, raising the drilling stem out of the drum (potentially exposing the operator to high pressure water jet);
- out-of-service coke drum safety relief valve leaking (with potential hydrocarbon release to the atmosphere from the fractionation tower, which this relief valve discharge is aligned to).
- high pressure drilling water delivery hose failure;

•A similar solution was recommended during HAZOP to the water hose disconnection or rupture scenario.

Decoking Hose Failure - A Safety Threat

There was a near miss incident in our coker unit about a year back. One of our decoking water hoses had failed from its top rotary joint end and fell down on the cutting platform. There was no indication that it was about to rupture (that's why "near miss"). The hose had failed from its coupling portion due to improper bonding/curing of the glue used. Fortunately, nobody was beneath the falling hose when it failed and a major accident got avoided. We replaced the hose with a new one of another manufacturer, in addition to providing 2 strong safety clamps with chains fastened to the top flange to prevent falling down for the other potential hoses.

Anand C Haridas/JAMNAGAR/RIL@RELIANCE [mailto:<u>anand_c_haridas@ril.com]</u>

Other Results

Typical scenario when there are multiple coke drums with its PSVs discharge aligned to Blowdown system or to Fractionator.

Possible backflow of blowdown (or fractionator) vapors to an open drum, leading to release of hydrocarbons / H_2S with potential fire.

	Deviations		Frequency Evaluation														Possible Effects	Conseq. Severity	RRF Required	Safeguards	IPL (Independent	IPL	RRF	Overall	RRF [°] Gap
			Possible Causes	Freq.		S S		ourogua.ao	Protection Layers)	Туре		RRF	S												
1	Rev	motor on th		t valv ge o PSV	ves located of the coke	4	100	 Provide limit switches for the block valves located on PSV discharge and a permissive logic that prevents these blocakages from opening if the top head valve is opened. Provide a permissive logic that prevents the top and bottom head valves from opening if the blockages located on PSV discharge are opened. 	permissive logic that prevents these	BPCS	10	100	TR												
С								Operator by procedure closes the block valves located on PSV discharge before opening the drum.	Operator by procedure closes the block valves located on PSV discharge before opening the drum.	Operat. Proced ure	10														

Integrated HAZOP and LOPA/SIL Analysis

icrosoft Excel -	Integrated HAZO	P and	LOPA.xls							[. @	
<u>A</u> rquivo <u>E</u> ditar												
<mark>☞ 및 ڲ ④ Q, ♥ Q, & B B, - ♥ ♥ - ♥ - ⊗, Σ - ڲ↓ X↓ <u>U</u>, <mark>秒</mark> 98% - ∅ ₌ - ♥ - N Z S ≡ ≡ ≡ ፼ ♀ % 00 % ₩ ₽ ₽ ⊞ - & - <u>A</u> - ₌</mark>												
al L71 -	• 9 • N I	S	= = = = 🦉 % 00	00, 00, 00, 00 0,€ 00, 00		🗄 • 🖘 • <mark>A</mark> • 📮						
A	B	С	E	F	I	L	M	N	0	P	Q	
Deviations	Frequency Eval	uation	Possible Effects	Conseq. Severity	RRF Required	Safeguards	IPL (Independent	IPL	RRF	Overall	RRF Gap	
201141010	Possible Causes	Freq.		s	s	Sureguirus	Protection Layers)	Туре		RRF	S	
(As Well As)	- Coke drum A to Blowdown Tower valves (HV-011 and 012) inadvertently opened (in an "out of service" drum).	+	- Release of hydrocarbons from blowdown system to	4	1000	- Provide a permissive logic which prevents HV- 011/012 from opening in case top or bottom head valves are opened.	- Provide a permissive logic which prevents HV- 011/012 from being opened in case top or bottom head valves are opened.	BPCS	10	1000	TR	
Contamination			atmosphere through drum top (which is opened in the "out of service"drum).	ו			- Prevents the Drum to Blowdown Tower valves from opening on low drum overhead pressure.	SIF (SIL 2)	100			
Only one facilitated session is required and only one database is generated. The integrated approach is less time consuming and more consistent, since the HAZOP and LOPA teams are the same.										BI	2	
										PETRO	BRAS	

Conclusions

• "No one system has proven effective in eliminating all incidents associated with incorrect valve activation due to mistaken coke drum operation."

(US EPA and US OSHA, 2003) Chemical Safety Alert – "Hazards of Delayed Coker Unit (DCU) Operations"

•However, the **definition of a set of permissive logics** that prevent inadvertent valve operations during the coke drums batch steps has been an improvement adopted by some refiners. The set of logics are defined based on operational procedures, during brainstorming sessions involving a multidisciplinary team.

•HAZOP and LOPA methodologies can provide a risk decision basis to assess the set of permissive logics, defining what accident scenarios these logics can prevent, the amount of risk reduction needed to achieve a scenario tolerable frequency of occurrence and the availability or SIL required for those logics which will be defined as SIFs.

•The integrated HAZOP and LOPA Analysis is presented as a more consistent and less time consuming approach.

