Recycle and Catalytic Strategies for Maximum FCC Light Cycle Oil Operations

Ruizhong Hu, Manager of Research and Technical Support
Hongbo Ma, Research Engineer
Larry Langan, Research Engineer
Wu-Cheng Cheng, Director of Research and Development

David Hunt, FCC Technical Service Manager-(281)449-9949, david.hunt@grace.com
Distillate demand growth is expected to exceed Gasoline
LCO Selectivity

LCO is an Intermediate Product

Conversion wt% vs LCO wt% graph showing a peak at approximately 20% conversion.
LCO and Bottoms Selectivity

![Graph showing conversion vs. bottoms and LCO weight percentages with green markers for HI Z/M]
LCO and Bottoms Selectivity

Is the Maximum LCO Point Optimal?

![Graph showing the relationship between Bottoms wt% and LCO wt% for High and Low Z/M](image)

- **Bottoms wt%** vs **Conversion wt%**
- **LCO wt%** vs **Conversion wt%**

- Green Dots: High Z/M
- Blue Squares: Low Z/M
Maximum LCO Optimization Strategies

- **Reduce gasoline endpoint and maximize LCO endpoint**

- **Feedstock**
 - Removal of diesel range material from the FCC feedstock
 - FCC feed hydrotreating severity optimization
 - Residual feedstock optimization

- **Operating Conditions**
 - Lower reactor temperature
 - Higher feed temperature
 - Lower equilibrium catalyst activity

Additional Bottoms Results!
Maximum LCO Optimization Strategies

- **Catalyst Optimization**
 - Increased bottoms conversion
 - Lower zeolite and higher matrix surface area
 - Lower Activity
 - Maintain C$_3$+ liquid yield and gasoline octane
Recycle

- To fully maximize LCO, recycle is required to maintain bottoms yield as conversion is reduced.

- Which recycle stream is best to recycle?
 - Heavy cycle oil or bottoms?
 - Which specific boiling range is optimal?
 - Does the feedstock type play a role?
Lab Simulation of Recycling Operation

- A two-pass Davison Circulating Riser (DCR) +ACE scheme was adopted to simulate the recycling operation in a commercial unit.
 - DCR was used to generate 650+°F material over a conversion range of 75 to 54 wt% with a Resid and VGO feedstock.
 - 650+°F stream was distilled into desired bottom cuts.
 - Bottoms cuts were blended with original resid feed.
 - ACE used original feeds together with recycle streams.
 - Grace’s MIDAS® premium bottoms cracking catalyst was used.

```
Feed- Resid and VGO

DCR → Distillation → Blending → ACE → FCC Products

650+°F

GRACE

```
Riser Pilot Plant (DCR) Used to Generate Recycle Streams

- Recycle streams at 54% conversion distilled to:
 - 650°F to 750°F
 - 650°F to 800°F
 - 650°F to 850°F
 - 650°F+
 - 750°F+
 - 800°F+
 - 850°F+

- Recycle streams at 54%, 58%, 68%, & 75% conversions distilled to:
 - 650°F to 750°F

- Quantity of each recycle stream measured from 1st pass cracking

- Properties of each recycle stream
Incremental Yields of 650-750°F Recycle Streams

<table>
<thead>
<tr>
<th>Boiling Range</th>
<th>VGO</th>
<th>650-750°F from VGO</th>
<th>Resid</th>
<th>650-750°F from Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recycle Ratio, wt%</td>
<td>0</td>
<td>10.5</td>
<td>0</td>
<td>7.3</td>
</tr>
<tr>
<td>Cat-to-Oil Ratio</td>
<td>3.29</td>
<td>3.49</td>
<td>3.43</td>
<td>4.80</td>
</tr>
<tr>
<td>Dry Gas, wt%</td>
<td>0.70</td>
<td>0.73</td>
<td>1.08</td>
<td>1.13</td>
</tr>
<tr>
<td>LPG, wt%</td>
<td>8.39</td>
<td>8.89</td>
<td>7.96</td>
<td>13.34</td>
</tr>
<tr>
<td>C5+ Gasoline, wt%</td>
<td>44.01</td>
<td>43.58</td>
<td>40.63</td>
<td>39.79</td>
</tr>
<tr>
<td>LCO, wt%</td>
<td>26.04</td>
<td>26.32</td>
<td>24.72</td>
<td>36.97</td>
</tr>
<tr>
<td>Bottoms, wt%</td>
<td>18.96</td>
<td>18.68</td>
<td>20.28</td>
<td>8.03</td>
</tr>
<tr>
<td>Coke, wt%</td>
<td>1.90</td>
<td>1.81</td>
<td>5.59</td>
<td>5.45</td>
</tr>
</tbody>
</table>

- 650-750°F fractions from VGO made about the same LCO and bottoms as fresh VGO.
- 650-750°F fractions from Resid made much more LCO, less bottoms and additional LPG than fresh Resid.
Cracking Path of Hydrocarbon Molecules

- **Saturates**
- **Mono-aromatics**
- **Di-aromatics**
- **Tri-aromatics**
- **Tetra-aromatics**

R': hydrocarbons with less than 4 carbon atoms

650-750°F Recycle Stream from VGO

650-750°F Recycle Stream from Resid
Properties of Recycle Streams at 54% Conversion from Resid

- **API Gravity @60 øF**
 - Data: 15, 10, 12, 8, 4, 0

- **Conradson Carbon, wt.%**
 - Data: 1000, 900, 800, 700

- **50% Vol% F**
 - Data: 9, 5

- **Hydrogen, wt.%**
 - Data: 12, 11, 10, 9
Properties of 650-750°F Recycle Stream vs. Conversion for Resid

- **API Gravity**
 - Fresh Feed
 - 54%
 - 58%
 - 60%
 - 75%

- **Conradson Carbon, wt.%**
 - Fresh Feed
 - 54%
 - 58%
 - 60%
 - 75%

- **Hydrogen, wt.%**
 - Fresh Feed
 - 54%
 - 58%
 - 60%
 - 75%

- **50 vol% F**
 - Fresh Feed
 - 54%
 - 58%
 - 60%
 - 75%
Properties of 650-750°F Recycle Stream vs. Recycle % - Resid

- Key yields at 55 wt.% conversion vs. % recycle in combined feed
Element Tracking Approach

- Element Tracking Approach can be used to simulate continuous recycle operation.
- Two-pass cracking can closely simulate steady-state.

\[
\begin{align*}
LCO_{tot} &= LCO_1 + RR \times LCO_2 \\
COK_{tot} &= COK_1 + RR \times COK_2 \\
GAS_{tot} &= GAS_1 + RR \times GAS_2 \\
BOT_{tot} &= (BOT_1 - RR) + RR \times (BOT_2 - RR) + RR^2 \times (\ldots)
\end{align*}
\]
Maximum LCO Yields – Fresh Feed Basis – Resid

<table>
<thead>
<tr>
<th></th>
<th>Max. Gasoline Base</th>
<th>Base No Recycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion, Wt.%</td>
<td>70.0</td>
<td>55.0</td>
</tr>
<tr>
<td>Recycle Ratio</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum recycle available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen, Wt.%</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td>Total C1's & C2's, Wt.%</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>C3=, Wt.%</td>
<td>3.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Total C3's, Wt.%</td>
<td>3.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Total C4=’s, Wt.%</td>
<td>5.1</td>
<td>3.9</td>
</tr>
<tr>
<td>Total C4’s, Wt.%</td>
<td>8.5</td>
<td>5.6</td>
</tr>
<tr>
<td>C5+ Gasoline, Wt.%</td>
<td>49.4</td>
<td>40.5</td>
</tr>
<tr>
<td>RON</td>
<td>89.6</td>
<td>89.2</td>
</tr>
<tr>
<td>MON</td>
<td>78.6</td>
<td>77.3</td>
</tr>
<tr>
<td>LCO, Wt.%</td>
<td>20.5</td>
<td>24.7</td>
</tr>
<tr>
<td>Bottoms, Wt.%</td>
<td>9.5</td>
<td>20.2</td>
</tr>
<tr>
<td>Coke, Wt.%</td>
<td>6.7</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Max. Coke Allowed

GRACE

17
650-800°F and 650-850°F produces the highest LCO selectivity with slight coke penalty
Fresh Feed & Recycle Cracking Selectivity Differences - Resid

- Yields of 2nd pass cracking (Recycle Cracking) minus Yields of Fresh Feed Cracking

2nd pass cracking of 650-750\textdegree°F fraction obtained at reduced conversion made more LCO than cracking fresh feed with almost no penalty on coke and gasoline. Large coke debit at increased conversion.
Catalyst Strategies for Maximum LCO

- **Maximize Bottoms Cracking to LCO**
 - MIDAS® Technology Platform
 - Optimal matrix surface area, pore size, and pore distribution

- **Optimal Ecat MAT**
 - Lower within slurry yield and liquid yield target
 - Optimal rare earth for activity and hydrogen transfer

- **Reduced zeolite surface area**
 - Minimize LCO conversion via zeolite

- **ZSM-5**
 - OlefinsMax® additives
 - OlefinsUltra® additives
 - Maintain or increase liquid yield
 - Recover any loss of gasoline octane and LPG olefins
Bottoms Cracking Fundamentals

Feed Thermal/Catalytic

Catalytic

Type I Precracking and Feed Vaporization
Type II Dealkylation of alkyl aromatics
Type III Conversion of naphthenoaromatics

Coke

Type I
Type II
Type III

MIDAS® Catalyst is the most effective catalyst for Maximum LCO via Type I, II and III cracking
MIDAS® Catalyst Family

- **MIDAS®-100**
 - Original invention - metals tolerant bottoms cracking

- **MIDAS®-200**
 - Higher activity

- **MIDAS®-2000**
 - Same performance as MIDAS®-100 in low metals applications

- **MIDAS®-300**
 - Introduced in 2008
 - Deep bottoms cracking
 - LCO maximization

MIDAS® Sales History

![Sales Growth Chart]

Commercially Proven in Over 100 Applications Worldwide
Break the Bottom of the Barrel with MIDAS® Catalyst Technology

- **MIDAS®-300** is the latest result of Grace Davison’s 60+ year commitment to understanding bottoms cracking mechanisms and catalysts
 - Our best technology for a diesel driven market

- **BX™-450 Additive: LCO Maximization Additive**
 - Based on MIDAS®-300 technology and used at 10 to 20% of total catalyst additions
Modeling with Optimal Recycle Stream and Catalyst System

- Full Burn FCC - Residual Feedstock
 - Model yields and operating conditions
 - Base Resid Operation – Maximum Gasoline
 - Case 1 – Maximum LCO with 650-800°F recycle stream
 - Case 2 – Optimized maximum LCO operation
Base Maximum Gasoline Operation

<table>
<thead>
<tr>
<th>Resid Feedstock Operation</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst</td>
<td>MIDAS® -100</td>
</tr>
<tr>
<td>Mode</td>
<td>Max Gaso.</td>
</tr>
<tr>
<td>Recycle %FF (650 to 800°F)</td>
<td>0.0</td>
</tr>
<tr>
<td>Reactor Temperature, °F</td>
<td>975</td>
</tr>
<tr>
<td>Air Blower, mscfm</td>
<td>Constraint</td>
</tr>
<tr>
<td>Wet Gas Compressor, scf/b</td>
<td>Constraint</td>
</tr>
<tr>
<td>LPG/Gaso., Vol%</td>
<td>23.9/56.7</td>
</tr>
<tr>
<td>RON/MON</td>
<td>92.6/80.6</td>
</tr>
<tr>
<td>LCO, Vol% FF</td>
<td>22.9</td>
</tr>
<tr>
<td>Slurry, Vol% FF</td>
<td>6.8</td>
</tr>
<tr>
<td>C₃+, Vol% FF</td>
<td>110.3</td>
</tr>
<tr>
<td>Incremental $/b</td>
<td>Base</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Relative Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3=, $/b</td>
<td>-13.9</td>
</tr>
<tr>
<td>C4=, $/b</td>
<td>-2.5</td>
</tr>
<tr>
<td>Gaso., $/b</td>
<td>0.0</td>
</tr>
<tr>
<td>LCO, $/b</td>
<td>8.0</td>
</tr>
<tr>
<td>Slurry, $/b</td>
<td>-18.9</td>
</tr>
</tbody>
</table>
Maximum LCO with Recycle

<table>
<thead>
<tr>
<th>Resid Feedstock Operation</th>
<th>Base</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst</td>
<td>MIDAS® -100</td>
<td>MIDAS® -100</td>
</tr>
<tr>
<td>Mode</td>
<td>Max Gaso.</td>
<td>Max LCO</td>
</tr>
<tr>
<td>Recycle %FF (650 to 800°F)</td>
<td>0.0</td>
<td>11</td>
</tr>
<tr>
<td>Reactor Temperature, °F</td>
<td>975</td>
<td>950</td>
</tr>
<tr>
<td>Air Blower, mscfm</td>
<td>Constraint</td>
<td>Constraint</td>
</tr>
<tr>
<td>Wet Gas Compressor, scf/b</td>
<td>Constraint</td>
<td>75% of Constraint</td>
</tr>
<tr>
<td>LPG/Gaso., Vol%</td>
<td>23.9/56.7</td>
<td>19.3/51.9</td>
</tr>
<tr>
<td>RON/MON</td>
<td>92.6/80.6</td>
<td>90.0/79.5</td>
</tr>
<tr>
<td>LCO, Vol% FF</td>
<td>22.9</td>
<td>32.0</td>
</tr>
<tr>
<td>Slurry, Vol% FF</td>
<td>6.8</td>
<td>6.0</td>
</tr>
<tr>
<td>C_3^+, Vol% FF</td>
<td>110.3</td>
<td>109.2</td>
</tr>
<tr>
<td>Incremental $/b</td>
<td>Base</td>
<td>+0.10</td>
</tr>
</tbody>
</table>
Optimized Maximum LCO Operation with MIDAS-300 and OlefinsUltra

<table>
<thead>
<tr>
<th>Resid Feedstock Operation</th>
<th>Base</th>
<th>1</th>
<th>2 (Optimized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst</td>
<td>MIDAS® -100</td>
<td>MIDAS® -100</td>
<td>MIDAS® -300 & OlefinsUltra®</td>
</tr>
<tr>
<td>Mode</td>
<td>Max Gaso.</td>
<td>Max LCO</td>
<td>Max LCO</td>
</tr>
<tr>
<td>Recycle %FF (650 to 800°F)</td>
<td>0.0</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Reactor Temperature, °F</td>
<td>975</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td>Air Blower, mscfm</td>
<td>Constraint</td>
<td>Constraint</td>
<td>Constraint</td>
</tr>
<tr>
<td>Wet Gas Compressor, scf/b</td>
<td>Constraint</td>
<td>75%Constraint</td>
<td>Constraint</td>
</tr>
<tr>
<td>LPG/Gaso., Vol%</td>
<td>23.9/56.7</td>
<td>19.3/51.9</td>
<td>30.0/44.0</td>
</tr>
<tr>
<td>RON/MON</td>
<td>92.6/80.6</td>
<td>90.0/79.5</td>
<td>92.9/80.7</td>
</tr>
<tr>
<td>LCO, Vol% FF</td>
<td>22.9</td>
<td>32.0</td>
<td>33.4</td>
</tr>
<tr>
<td>Slurry, Vol% FF</td>
<td>6.8</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>(\mathcal{C}_3^+), Vol% FF</td>
<td>110.3</td>
<td>109.2</td>
<td>112.4</td>
</tr>
<tr>
<td>Incremental $/b</td>
<td>Base</td>
<td>+0.10</td>
<td>+1.40</td>
</tr>
</tbody>
</table>

- ZSM-5 (OlefinsUltra® is critical to maintain profitability)
Summary

- Maximum FCC LCO operation is challenged by bottoms yield and the need to preserve C3+ liquid yield and octane as conversion is reduced
 - MIDAS®-300 catalysts and BX™-450 additives
 - Technology for increased LCO selectivity via improved bottoms cracking
 - OlefinsMax® and OlefinsUltra® additives - ZSM-5
 - Maintain liquid yield and gasoline octane during maximum LCO operations
Summary

- Recycle is required to fully maximize LCO
 - Due to the higher di-aromatic and lower tri-aromatic level, recycle stream of 650-750°F from Resid gives more LCO and less bottoms than that from VGO.
 - Recycle produced from 1st pass conversion of 55% is the optimal among 55%, 58%, 68% and 75%: more LCO with almost no penalty on coke and gasoline selectivity.
 - 650 to 800°F recycle stream produces the highest LCO when processed against a coke constraint.
 - Coke demand will be higher to maximize LCO using a 650+°F recycle stream.

The proper catalyst system, operating conditions and recycle ensure a profitable maximum FCC LCO operation.
Questions?

FCC Catalysts

- Propylene Maximization
- Resid Conversion
- Gasoline Maximization
- LCOi Maximization
- Coke Selectivity

FCC Additives

- Controlling SOx, NOx & CO
- Reducing Gasoline Sulfur
- Boosting Octane
- Improving Fuel Quality
- Producing Petrochemical Feedstocks
- Reducing Environmental Emissions

GRACE Davison

We don’t just make FCC catalysts, we make FCC catalysts for you.