

Preparing for Bottom-of-the-Barrel Vessel Entry Venezuelan Coker Unit Emergency Shutdown

Martha Smith
Global Technical Director
ZymeFlow Decon Technology

Case Study

Coker Unit Turnaround - Venezuela

Venezuela Coker Decontamination

Project

- ◆Decontamination of the main fractionator coker column at a Venezuela refinery
- +4 years since last shutdown
- →Main goal; eliminate delays in vessel entry by minimizing manual and mechanical cleaning activities of the tower

Challenge

→Large amounts of coke, H₂S, and pyrophoric concerns

Venezuela Coker Decontamination

Past Procedure

- ◆Traditional chemical cleaning every 4 years with 6 different hazardous chemicals requiring full body suits
- →Chemicals circulated over an average of 36 hours
- →Required 12 man crew per shift and 5 days of mechanical preparation

- Past Procedure Results
 Left a tarry residue at the bottom of the tower up to 2 feet over the lower manway, completely burying bottom distributor
 - →Extensive mechanical cleaning was required under fresh air
 - Leakage from chemical hoses required ground clean up
 - ◆Entry permits were delayed until all cleaning tasks were complete

Traditional Cleaning Methods

Options

- ◆Available refinery materials; BTX, heavy aromatic naphtha (HAN), gas oil, kerosene
- +Chlorinated solvents
- ◆Traditional/commodity chemicals; i.e. d-limonene
- →Mechanical cleaning
- Mixed approach between methods

Results & Impacts

- ◆Unpredictable results often disappointing
- Removing value as feedstock (BTX)
- →Long cleaning times
- →High volume of waste
- *Hazardous materials
- →Multiple steps

ZymeFlow Engineered Solution

Bottoms Circulation

- Vapour-Phase® Application

- **Continuous Monitoring**

- Water Rinse with Zyme-Ox® Plus

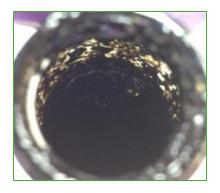
YME FLOW Venezuela Coker Engineered Solution

Bottoms Circulation

- ◆Specialty Rezyd-HP chemistry added to the HVGO cutter stock
- ◆Refinery wanted to keep their standard circulation time of 24 hours and normal flow rate
- +Only change is the addition of chemistry

Innovative Chemistry: Rezyd-HP

- →Custom blend including high Kb solvent and surfactant
- →Applied as an additive to common refinery cutter stocks
- **+**Low hazard (2, 1, 0)
- **→**Biodegradable
- →Dissolves and/or fluidizes deposits
- →Significantly decreases final cleaning and total cleaning time
- ★Low volumes required and less waste than other methods


Results: loose coke for ease of removal. (Pictured: coker strainer basket)



ZYME FLOW Laboratory Study – Polymerized Asphalt

- →Sample comprised of 75% asphalt,25% ground tire rubber
- **→**Sample almost impenetrable
- ◆Several tests tried with alternative chemistries at 6% dose with no to little effect
- +Successful Results:
 - **+**LCO 1:1
 - ◆Rezyd-HP at 6% dose
 - +120 F
 - +Slight agitation

Product X

Rezyd-HP treatment: sample fluidized

ZYME FLOW Laboratory Study – Vac Tower Bottoms

- →Vacuum tower bottoms from a Texas refinery
- +Successful Result:
 - +After 1 hr
 - **+LCO 1:1**
 - ◆Rezyd-HP at 2% dose
 - **+**Some agitation
 - +120° F
- ◆After 4 hours all were successful but Rezyd-HP successful after 1 hour

(L to R) HP, Product X, Product Z

Laboratory Study – Quench Tower Bottoms

Quench Tower Bottoms Prior to Treatment

Product X vs Rezyd-HP in LCO @ 120F

Product X vs Rezyd-HP in HAN @ 185F

ZYMEFLOW Venezuela Coker Engineered Solution

Bottoms Circulation

Vapour-Phase® Application

- → Zyme-Flow UN657 injected into steam line at base of tower (add more specifics)
- Chemistry injected over a 10 hour period
- → Steam routed to the flare

Vapour-Phase® Decontamination Process

- →Operations shuts down and deinventories equipment using standard procedures
- →Zyme-Flow UN657 chemistry is injected into the equipment with steam
- ◆Same boiling point as water therefore chemistry contacts all surfaces with minimum injection points

Vapour-Phase

"True" Vapour-Phase

	ZF Vapour-Phase	Steam Dispersion
Boiling Point	100 C	180 C
Typical # of injections	Crude Unit: 1 injection	Crude Unit: 5 injections points
Effluent quantity*	Mostly steam condensate, minimal injections, <12 hrs (no pre steaming)	Req. post treatment/water flushing, high volume steam, long pre steaming
Equipment	Drum pumps	Hoses, drum pumps, frac tanks, mixed tank
Ability to travel	As far as steam will travel - proven multiple kilometers	Depends on steam pressure – will drop out
Effluent treatment	None required	Collection and post treatment (Frac tanks)

^{*}some studies show 80% reduction in effluent quantity

YMEFLOW Venezuela Coker Engineered Solution

Bottoms Circulation

Vapour-Phase® Application

Continuous Monitoring

- → Zyme-Flow chemistry concentrations tested at vents and drains throughout process to ensure dosage – self expending chemistry
- → Technicians used 4-gas meters to verify H₂S, LEL, and benzene levels consistently decline until zero
- → Monitored unit for cold spots

YME FLOW Venezuela Coker Engineered Solution

- **Bottoms Circulation**
- Vapour-Phase® Application
- Continuous Monitoring
 - Water Rinse with Zyme-Ox® Plus
 - → Zyme-Ox Plus chemistry used to oxidize any additional pyrophorics
 - Chemistry oxidizes on contact and does not need to be heated
 - → Water cools unit faster so entry could be made

Venezuela Coker Results

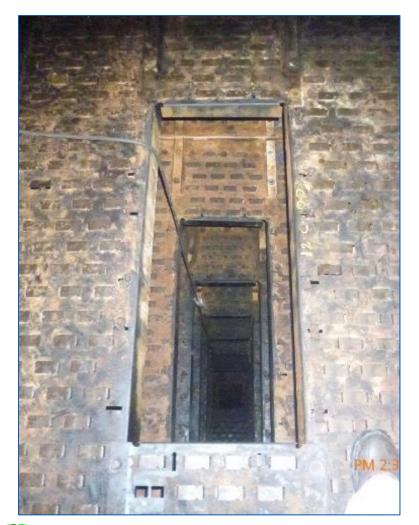
- ◆Vessel was open and ready for inspection and hot work after 10 hours of Vapour-Phase
- Saved 7 days of mechanical preparation and cleaning
- →All decontamination and maintenance work completed on schedule
- ◆Tower free of oil with no traces of tarry hydrocarbon
- →First time in vessel's history, the bottom manway was not obstructed by solids
- Easily swept out a single foot of fluff coke (hydrocarbon free)
- +84% reduction in effluent

Bottom distributor was accessible and completely unplugged

Venezuela Coker Results

Venezuela Coker Results

Venezuela Coker Benefits


- +Only 2 technicians per shift, 1 pneumatic pump, and 50 feet of half inch chemical hose
- Injection points connected to existing steam and process lines completed in less than one shift
- →Eliminated several steps with simultaneous treatment of H₂S, LEL, and oxidation of pyrophorics
- ★84% reduction in effluent; 6,875 gallons versus the 43,000 gallons with previous method

Venezuela Coker Benefits

Effects on Effluent and Waste Generation

Background

- ◆No treatment facility on-site
- →All effluent collected per site requirements

Oil Wash with Rezyd-HP

- →Only small dose required
- ◆After circulation, cutter stock/chemistry combination sent to slop for considerable dilution
- Chemistry does not negatively effect cutter stock

ZymeFlow Vapour-Phase

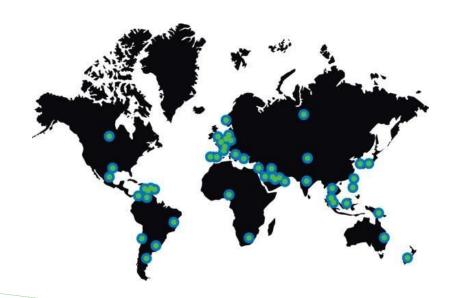
- ★Large reduction in effluent (over 80% reduction) including post rinse
- ◆Chemistry becomes part of steam – no water circulation required
- Reduced total steaming time (no pre or post steaming needed)
- →Reduced cost; Non-hazardous

ZYME FLOW Total Cost Comparison – Venezuela Coker

	ZymeFlow Decon	Previous Chemical Contractor
Chemicals Utilized	3 chemistries	6 chemicals
Application and Hours	Vapour-Phase® 10 hrs	Circulation 36+ hrs
Mechanical Prep Time	<12 hrs	120 hrs
Personnel Required	2 techs per shift	12 man crew per shift
Equipment Setup	1 pneumatic pump, 50 feet ½ in. hose	Several chemical hose circuits, stage heated frac tanks, major mechanical, fork lifts
Special Requirements	None	Haz suites, secondary containment, barricades
Remaining Coke	<1' fluff coke	Tarry coke 2' above lower manway
Mechanical Cleaning	Fluff coke easily removed, no fresh air required	Extensive under fresh air
Effluent	6,875 gallons - no issues	43,000 gallons requiring disposal

Conclusion

- ★Large differences between vessel entry methods – need to consider entire turnaround scope
- ★Methods are available that are faster and more efficient than mechanical-only removal of hardened deposits such as coke
- ◆Decontamination affects not only on vessel entry but maintenance and entire turnaround schedule



Worldwide Leader in Decontamination

- ◆Decontamination specialists for over 25 years
- +200+ TAR and emergency outage projects/year
- →Experience in over 50 countries

- Wide range of specialty blended chemistries
- →Various application options including Vapour-Phase®
- ◆Zero recordable injuries in 25 year history

Conclusion & Questions

www.ZymeFlow.com

Martha Smith
Global Technical Director
Martha.smith@zymeflow.com

