

SAFETY SEMINAR Rio de Janeiro, Brazil - August 3-7, 2009

PETROBRAS' Delayed Coking Unit: a new concept

Authors:

Neyde A. F. Marques¹ Francisco C. C. Barros¹ Renata S. F. Simões¹ Mário S. Almeida²

¹ PETROBRAS - PETROLEO BRASILEIRO S.A. Research and Development Center – Basic Engineering – Downstream, Gas and Energy ² PROJECTUS Consultoria Ltda

Administrator Public Information CENPES/EB AB-G&E/CS June-2009 PETRO

Current Refining Scenario

- Increase in processing capacity of heavy oil and national oil.
- New profile of oil products demand.
- Demand for high quality products.
- Growth of environmental concerns.
- Growth of biofuel demand.

Typical Petroleum Distillation Curve

Product Demand

Internal Market / Brazil (1000 bpd)

Typical refining scheme

Target to gasoline market and low fuel oil production

Refining scheme

Target to diesel market and low investment

Pilot Unit Informations

Patent: PI 0603024-6A (Petrobras)

	Properties	VR	AR	HVGC
Feed Streams	RCR, %wt	15.0	7.3	0.59
	°API	9.5	14.3	18.4
	Sulfur, %wt	0.74	0.67	0.54

Operating Conditions

Heater outlet temperature,°C	500
Coke Drum pressure, kgf/cm ² g	2.0

	Products	VR	VR + 20% HVGO	AR
Yields	Diesel, %v	51.3	52.2	53.5
nondo	HCGO, %v	20.2	23.2	27.7
	Coke, %wt	24.5	20.3	13.5

Operating Variables Selection

Operating Variables Definition

- ✓ High Recicle Ratio: > 20% v/v;
- ✓ High Coke Drum Pressure: 2.0 kgf/cm² g;
- ✓ High Heater outlet temperature: > 500°C

These conditions meet the main goal of maximizing diesel production and minimizing fuel oil production.

New Petrobras' DCU to Abreu e Lima Refinery

Driving Forces for New DCU

- > Maximizing diesel production.
- > Minimizing fuel oil production.
- Minimizing investment cost;
- > Minimizing water consumption;
- Minimizing emissions;
- Increase safety and operational continuity.

Reaction and Fractionation Sections

Gas Recovery Section

➤The designed process scheme meets environmental and operational requirements:

✓ energy recovery optimization;

- ✓ operational stability;
- ✓ minimum fresh water consumption;
- ✓ flexibility to process:
 - external streams;
 - off spec products.

- Heat integration studies based on:
 - ✓ tools and softwares like PETROBRAS simulators and others using "pinch technology" concept;
 - ✓ PETROBRAS experience in DCU project and operation.
- Upsets due to coke drum batch operation controlled by:
 - ✓ project criteria to minimize impacts at Fractionation and Gas Recovery Sections;
 - \checkmark instrumentation and advanced control tools.

- Environmental impact reduced by:
 - ✓ minimizing fresh water consumption.
 - ✓ actions to meet minimum emissions: closed pump-out system, maximum number of PSV relief aligned to internal DCU systems, etc.
 - ✓ processing off-spec products and external streams, minimizing refinery residues generation.

Maximum use of air coolers instead of cooling water exchangers:

Heat avabangara	% DUTY		
neal exchangers	OTHERS	New DCU	maximized air
Using cooling water	51.7	23.0	cooler use instead of cooling water
Air coolers	25.3	45.9	
Using process streams	23.0	31.1	
			heat integration

 \succ Use of stripped sour water to wash compressor gases.

➤ Main goals

✓ Receiving coke drum effluent from steam purge and water quench steps.

✓ Recovering steam and hydrocarbon vapors as sour water, gas and slop oil streams to be processed in DCU:

- minimizing residue generation.
- Main design and operation issues:
 - ✓ Formation of water/oil emulsion phase.
 - \checkmark Separation of hydrocarbon streams in order to enable the best routing inside DCU.

Desing improvements

✓ Defined pressure and temperature profile in order to improve heavy and light slop oil fractionation:

• better reuse of these streams in DCU, recovering them as distillate products.

✓ Blowdown designed to damp fluctuation of light and heavy slop oil production:

- minimum upset at Fractionator operation.
- \checkmark Disposal of refinery residue in the Blowdown.

- Desing improvements
 - Operating temperature that minimizes emulsion formation:
 significant reduction of mechanical damage risk caused
 - by severe water vaporization inside Fractionator and coke drum overhead line.

✓ Off-line coke drum effluent quenched mainly by the heavy slop oil recovered in this system:

- reduction of residue generation.
- ✓ Maximized air cooler use.

Conclusions

- > The new Petrobras' Delayed Coking Unit considers:
 - ✓ Operating conditions in order to maximize diesel production.
 - \checkmark Operational stability by the use of advanced control tools.
 - ✓ Strong heat integration, reducing utilities consumption.
 - \checkmark Reduced slop and waste generation.
 - ✓ Flexibility to process refinery residue and off-spec products.

