

Incorporating:

PEABODY ENGINEERING AIROIL - FLAREGAS CHENTRONICS

Operational and Design Issues Faced by Low NOx and Ultra Low NOx Burners

ANDY CASTELL – General Manager, The America's Tel: +1 832 300 2400

E-mail: acastell@hamworthy-combustion.com

- Statement of Intent
- The 3 W's???
 - Corporate Overview
 - Market Sectors
- What is Delayed Coking
- Burner Design Historical Requirement
- Burner Design Current Requirement
- Factors for Consideration in Burner Design
- Burner Design Advantages of Staging Principals
- Burner Design Future Requirements
- Burner Design Next Generation Technology
- Necessities for Meeting End User Future Objectives
- Questions???

Statement of Intent

Hamworthy Combustion informs that the contents contained within this presentation, including all information and statements made, are not specific to any manufacturer type or model but are intended only as topics for discussion with the intent to simply raise the criticality of certain information and data necessary to review the correct design, operation and function of Low NOx and Ultra Low NOx burners and how if not correctly interpreted this lack of clarity in information can lead to incorrectly designed equipment which in turn could lead to a loss in furnace efficiency and overall production of the furnace itself.

The information contained within this presentation is of a proprietary nature and shall not be released to third parties without the prior written consent of Hamworthy Combustion.

<u>Hamworthy Combustion</u> <u>Global Solutions, Local Delivery</u>

WHO ARE HAMWORTHY COMBUSTION?

WHAT COMBUSTION EQUIPMENTS DO WE SUPPLY??

WHICH MARKET SECTORS DO WE SUPPORT???

THE 3 W's ???

CORPORATE INFORMATION.

History

Established since 1911

US\$160 million

•No. of Employees 700 + worldwide

Annual Turnover

Offices

- Major European Economies
- Japan
- India
- United States
- ChinaPoland
- Singapore Dubai

5

Korea

Mexico

Brazil

Fully comprehensive Advanced Technology Centre incorporating 14 test furnaces

MARKET SECTORS – CUSTOMER CENTRIC

Power

Thermal Oxidation Systems & Flares

Sales	Contracts Commissioning Service Spares	
	Marine	
	Power	
	TOS & Flares	
	Process	
	Industrial	

Dedicated teams of c 100 people focussed on each sector: specialists, 100% full time

Process

Industrial

We are a true customer solutions provider in the highly specialised markets we serve

What is Delayed Coking?

- I am still learning and hope to continue to learn, but!
- A process which incorporates a fired heater which is used to obtain thermal cracking temperatures of 905 – 940°F having horizontal tubes within which feed stock is processed at short residence times to ensure "delayed coking" occurs downstream of the heater in coking drums.
- A fired heater installation having up to 1,000 burners installed of low firing capacity.
- A large capital investment requiring optimum continual performance from all equipment installed to ensure maximum furnace efficiency is achieved with minimum maintenance requirements.

Delayed Coking – Burner Design Consideration Historical Requirements....

- Burners firing gas & oil
- High excess air levels oil firing 25-30% / gas firing 20-25%
- CO emissions of < 200 vppm</p>
- Nox emissions of < 150 vppm for gas firing / < 350 vppm for oil firing</p>
- UHC guarantees not required
- No defined noise guarantee
- Turndown limits of 3:1 oil firing / ≥ 5:1 gas firing
- Round Flame central burners / flat flame side burners

RESULTS????

Conventional burner design with good stability, low risk, low maintenance but high emissions and in some cases low furnace efficiency!

<u>Delayed Coking –</u> <u>Historical Burner Design....</u>

Delayed Coking – Burner Design Considerations Current Requirements.....

- Burners predominantly firing gas (and oil depending on country)
- Low excess air levels 10% (oil 20-25%)
- CO emissions of < 25 50 vppm</p>
- Nox emissions of < 25 35 vppm for gas firing (150 200 vppm oil firing)</p>
- UHC guarantees < 10 ppm</p>
- Noise levels < 80-85 dB 'A'</p>
- Turndown limits of 5:1
- Round flame central burners / flat flame side burners
- Ability to fire various range of fuel gas cases from high H2 to heavies and double bonded characteristics
- Increasing tendency for burners having lower firing capacity but higher number in quantities

Delayed Coking – Burner Design Considerations Current Requirements....Cont'd

RESULTS????

- Detailed low NOx or ultra low NOx burner design requiring careful design considerations in order to achieve good stability, low maintenance requirements and tighter operational control
- The increasing need to review NOx reduction techniques vs burner operating envelope and flame configuration/shape.
- The increasing need to review fuel gas compositions and operating temperatures
- The need for closer integration of end user, EPC, heater contractor and burner vendor
- The need to ensure all correct design data and information is fully received and considered in the final burner design parameters
- The need for open honesty about what can and can not be achieved in order to avoid long term maintenance and operational issues.

Receiving the correct and complete design data requirements, incl...

- Altitude above sea level clearly stated.
- Units of Liberation clearly stated.
- Maximum pressure drop across burner correctly stated.
- Design duty vs normal duty vs minimum duty fully reviewed
- Fuel compositions and conditions clearly stated.
- Emissions requirements stated with no additional safety factor added

						1	FIREBOX TEMPERATURE			
						2	NOX * Vppm			
			G	AS FUEL CHARACTERISTICS		3	CO * Vppm			
			1	FUEL TYPE		4	UHC * Vppm			
PURCHASER / OWNER: CLIENTS NA	ME	ITEM No.: FURNACE	# 2			5	PARTICULATE * SOX *			
			3			0	SUX			
SERVICE: LOCATION: SITE				MOLECULAR WEIGHT		6 * CORRECTED TO 3% O ₂ (DRY BASIS @ DESIGN HEAT RELEASE)				
			REV 5	FUEL TEMPERATURE @ BURNER, ⁰ F		9	NOTES:			
			REV 6			10				
1 TYPE OF HEATER				FUEL GAS COMPOSITION, MOLE % CH4		11	1) SOX EMISSIONS ARE A DIRECT RESULT OF THE FUEL BOUND SU			
2 ALTITUDE ABOVE SEA LEVEL, ft				C2H6	-	12	COMBUSTION PROCESS, FOR THIS REASON WE DO NOT OFFER	AS A GUARANTEE POINT		
3 AIR SUPPLY AMBIENT / PREHEATED AIR /			10	C3H8		13 14	2) THE ABOVE EMISSION DATA IS BASED ON THE FOLLOWING CRI			
4 TEMPERATURE, °F (MIN / MAX / DESIGN)			- 11	C4H10		15		LINK.		
5 RELATIVE HUMIDITY, %			12	C5H12		16	AIR TEMPERATURE OF			
6 DRAFT TYPE: FORCED / NATURAL / INDUCED			13	H2		17	H ² IN FUEL GAS OF			
7 DRAFT AVAILABLE: ACROSS BURNER, . in. H ₂ O			14	N2		18 19	N ² IN FUEL OIL OF FURNACE TEMPERATURE OF			
ACDOSS DI ENUM			<u>15</u>	TOTAL		20	OPERATING RANGE OF NORMAL TO MAXIMUM LIBERATION.			
8 H ₂ O				IQUID FUEL CHARACTERISTICS		21	ELECTRONICE OF NOTIFIC TO INFORMATE DELIVITION.			
9 REQUIRED TURNDOWN			10			22				
10 BURNER WALL SETTING THICKNESS, in.			- 17	HEATING VALUE (LHV)	+	23				
11 HEATER CASING THICKNESS, in. 12 FIREBOX HEIGHT, ft				SPECIFIC GRAVITY / DEGREE API	+	24 25				
12 FIREBOX HEIGHT, ft 13 TUBE CIRCLE DIAMETER, in.				H/C RATIO (BY WEIGHT)	<u> </u>	25				
			20		1	20	· · ·			
BURNER DATA			21	VISCOSITY @ ⁰ F (CST)		28				
14 MANUFACTURER			22			29				
15 TYPE OF BURNER			23			30 31				
16 MODEL / SIZE 17 DIRECTION OF FIRING			24			31				
18 LOCATION (ROOF / FLOOR / SIDEWALL)			25			33				
19 NUMBER REQUIRED			- <u>26</u> _ 27			34				
20 MINIMUM DISTANCE BURNER CENTRELINE, ft			28			35				
21 TO TUBE CENTRELINE (HORIZONTAL /			29			36				
21 VERTICAL) TO ADJACENT BURNER CENTRELINE (HORIZ /			- 30			37 38				
22 VERT)			31	FUEL TEMPERATURE @ BURNER, ⁰ F		39				
22 TO UNSHIELDED REFRACTORY (HORIZ /			32			40				
²³ VERT)			33			41				
24 BURNER CIRCLE DIAMETER, in.			34			42				
25 PILOTS: 26 NUMBER REQUIRED			35	Theocone, roig		43 44				
27 TYPE			— I N	ISCELLANEOUS		44				
28 IGNITION METHOD			36	BURNER PLENUM: COMMON / INTEGRAL	1	46				
29 FUEL			37			47				
30 FUEL PRESSURE, Psig			- 38		<u> </u>	48 49				
31 CAPACITY, Btu/H			39	INTERNAL INSULATION		49 50				
OPERATING DATA			40			51				
32 FUEL		I	41			52				
33 HEAT RELEASE PER BURNER, MMkcal/hr			42			53				
MMBtu/hr MW (LHV)			43		+	54 55				
34 DESIGN 35 NORMAL				MAXIMUM SERVICE TEMP, °F NOISE SPECIFICATION	+	55				
35 NORMAL 36 MINIMUM				ATTENUATION METHOD	+	57				
37 EXCESS AIR @ DESIGN HEAT RELEASE, %				PAINTING REQUIREMENTS	+	<u> </u>				
38 AIR TEMPERATURE, °F				IGNITION PORT: SIZE / NO	+	1		J	•	
39 DRAFT (AIR PRESSURE) LOSS in. H ₂ O		49		1	1	BURNER DATA SHEET	PROJECT No.	DOCUMENT No.	SHEET	
40 DESIGN		50	FLAME DETECTION: TYPE		1	API STANDARD 560				
41 NORMAL 42 MINIMUM			51	NUMBER / LOCATION				SALES	TBA	3 OF 3
43 FUEL PRESSURE REQUIRED @ BURNER, Psig			- 52		<u> </u>	-				
44 FLAME LENGTH @ DESIGN HEAT RELEASE, ft				SAFETY INTERLOCK SYSTEM FOR ATOMISING MEDIUM & OIL						
45 FLAME SHAPE (ROUND, FLAT, ETC)			54	PERFORMANCE TEST REQUIRED (YES OR NO)						
46 ATOMISING MEDIUM / OIL RATIO, lb/ lb			_		1					
				BURNER DATA SHEET						
BURNER DATA SHEET	PROJECT DO	OCUMEN OUTET	REV	API STANDARD 560	PROJECT N	. L	DOCUMENTING. OHELI V			
API STANDARD 560		T No. SHEET	1	AFI STANDARD 300	SALES		TBA 2 OF 3			
					SALES		IDM 20F3			
	SALES	TBA 1 OF 3								

EMISSION REQUIREMENTS

RE

Reviewing completely the fuel gas compositions, temperatures and operating pressures

- Single fuel gas firing
- Requirement to fire high H2 gases to LPG, Butanes, etc...
- Climatic / ambient temperatures and effect on fuel gas conditions.
- Increased tendency for coke formation through variation of fuels.
- Possibility of increased maintenance as a result of burner design choice vs fuel gas composition.

Single gas only =

- good pressure
- good velocity
- good fuel to air mixing
- good combustion
- low maintenance

Multi gas cases =

- lower pressure for high MW gases
- lower velocity for higher MW gases
- Poorer fuel to air mixing for higher MW gases
- higher design review to achieve good combustion
- possible increase in maintenance

Reviewing NOx reduction techniques in terms of staged fuel vs staged air vs staged combustion

<u>Staged Air Burner</u> Flat Flame Burner Dynamics

<u>Staged Fuel Burner</u> Round Flame Burner Dynamics

Staged Combustion

<u>??????????????</u>

Low NOx and Ultra LOw NOx Burners – Advantages Staged Air vs Staged Fuel

Staged Air	Staged Fuel
Less Potential for coking	Greater NOx reduction
Wider turndown	Easier set up
Less maintenance	
Increased flexibility	
Adjustable for changing gas cases	
Tighter flame dimensions	

Why????

Low NOx and Ultra LOw NOx Burners – Advantages Staged Air vs Staged Fuel

Reasons

Staged Air	Staged Fuel
Single nozzle – larger orifices	Possible to adapt more severe staging
Air staging means as you decrease fuel burner becomes in ratio	Staging principle is fixed
Larger orifices / drillings	
Possibility to change staging principle	
Secondary air can be adjusted via separate damper	
Tile is smaller as no risers outside of tile	A state and the

Low NOx and Ultra LOw NOx Burners – Staged Air vs Staged Fuel – Nozzle Design

Staged Air Nozzle

Staged Fuel Nozzle

Low NOx and Ultra LOw NOx Burners – Staged Air/Staged Fuel – possible flame condition

The need for closer integration of end user, EPC, heater contractor and burner vendor

The need for open honesty about what can and can not be achieved in order to avoid long term maintenance and operational issues.

Delayed Coking – Burner Design Considerations Future Requirements.....

- Burners predominantly firing gas
- Low excess air levels 5 to 10% (oil 20%)
- CO emissions of < 15 to 20 vppm</p>
- Nox emissions of < 20 vppm for gas firing (150 vppm oil firing)</p>
- UHC guarantees < 10 ppm</p>
- Noise levels < 80-85 dB 'A'</p>
- Turndown limits of 5:1
- Ability to meet emissions across all operating conditions
- Higher and more even heat flux (tighter flame shape)
- Possibly larger burners in restricted burner spacing to meet flux profile but keep capital cost low.
- <u>Ultimately, Lower Capital cost, improved reliability, lower</u> maintenance, lower emissions & higher efficinecy.

Delayed Coking – Burner Design Considerations Future Requirements.....

How to Achieve???

- Draw and expand on existing successful designs
- New Concepts
- Resolve Conflicts e.g
 - High furnace temperature vs NOx
 - Low flame temperature vs CO
 - Low Emissions vs Stability
 - Development using CFD and physical flow
 - modelling
- Burner Test Firing
- Site Trials

Delayed Coking – Burner Design Considerations Next Generation Burner Design Evaluation.....

Typical NOx Reduction Technology:

- Fuel Staging
- Air Staging
- Flue Gas Recirculation (FGR)
- Staged fuel or staged air is used to delay combustion, minimise peak flame temperature
- Effect of FGR adds heat but increases inerts and changes flame temperature / flammability range

Delayed Coking – Burner Design Considerations Alternative Technology – Staged Combustion....

Staged Combustion / Flue Gas Re-Circulation Burner Dynamics

- Internal Flue Gas Recirculation
- Creates Superheated diluted fuel gas (analogous to a low CV gas)
- Rapid ignition on contact with combustion air – excellent stability
- Suitable for high hydrogen and heavy hydrocarbon gaseous fuels

Patent Pending

Advantages of Staged Combustion technology

- Simple burner design
- No complex low NOx gas nozzles
- Avoid pre-mix
- Stable operation / good burn-out
- Large turn-down range
- Even flame profile
- Suitable for wide range of fuel gas from hydrogen to heavy hydrocarbons
- Ultra Low NOx (10-15 v ppm??)
- Size range 1 20 MMBtu/hr

Advantages of Staged Combustion technology

Cont'd....

Staged Combustion

Advantages of Staged Combustion technology Cont'd....

100% Natural Gas

20% Natural Gas / 80% H2

Necessities for Meeting End User Future Objectives

- Review of burner technology vs operating data and conditions.
- Increased openness within the industry regarding technology pro's and con's.
- Larger understanding of end user issues, equipment operability, maintenance requirements. (closer integration)
- Clarity in terms of end user emission guarantee requirements avoid adding safety margin on safety margin
- Realisation that a price driven market may not always offer the way forward in terms of achieving optimum furnace operation.

Questions????

- Is Ultra Low NOx the best solution if the operating and maintenance cost of equipment outweigh the cost associated with additional SCR catalyst?
- Is it possible moving forward with furnace designs that flame flame burners can be accepted as round flame design?
- Are local EPA requirements clearly visible between end user, EPC, heater vendors & equipment suppliers during conceptual design stages of a project?
- Do we all know of or have been involved with a furnace where operation could have been improved from an alternative review of burner selection?

