

Managing Weld Stresses for Advantage in Coker Engineered Repairs Pedro Amador (VP&Chief Technology Officer WSI)

- Coking and Cat Cracking Conference
 - New Delhi, India October 2013

www.azz.com/wsi-europe

Topics

Industry experience

- Managed stress repair history
- Machine welding enablers
- Temperbead welding
- Refinery example

Case study MiRo

Bulge repair example

- Bulge repair design
- Defining a repair strategy
- Executing in the field

Summary

Contact

Initial uses of managed stress weld repairs in the nuclear industry

- Highly stressed nozzle to pipe connections
- Corrosive environment created SCC conditions
- Common in BWR and PWR designs

Residual stress model: pressurizer spray nozzle

- Structural WOL process patented
- Residual stresses from welding used to generate compressive stresses
- Added strength of deposit provides a redundant repair
- Over 1,000 nuclear applications performed

Small nozzle structural overlay in pressurizer vessel

WELDING SERVICES EUROPE

Welding beneficial stresses

Welding stresses

- Inevitable with full fusion bond
- Accurately be managed through parameter control
- Homogeneous

Basis / key contributors

- Accurate heat input
- High dimensional quality

Results

• Predictable mechanical properties

Machine-applied predictability

 Allows accurate modeling and repair design

Temperbead Welding

Predictive analysis drives FCCU repair plan

Pressure Vessel Example

- FCCU stripper/reactor
- High temperature creep failure
- 5 Year life extension required

Anticipated Design Repair

- Model existing failure condition
- Develop "Engineered Design Repair" to manage stress levels below cre failure limits
- Perform level 3 FFS analysis

Engineered Design Repair

- Reduced scope of work
- Reduced cost for repair
- Validation of repair lifetime

FCCU Stripper/Reactor failure area

Engineered repair cycle using NPA

Mineraloelraffinerie GmbH&Co (MiRo)

Bulge Repair of Delayed Coker Unit Karlsruhe Germany, March 2012

The Delayed Coking Unit

Predictive analysis drives FCCU repair plan

- The MiRO refinery, in Karlsruhe, has a capacity of 300,000 BBL/d
- Planned T/A in 2012
- Bulges in delayed coking unit increased rapidly, so emergent repair had to be executed
- Analytical support and "Engineered Repair" developed by Stress Engineering
- Machine welding used to implement structural improvement repair
- Temperbead process eliminates requirement
 for PWHT

Coke Drum 001-B

Coke Drum dimensions

Coke Drum D-001B	Coke Drum D-001B		
Base Material	1,25Cr, ½Mo / 13CrMo44		
Estimated remaining thickness of existing clad	2mm		
Nominal thickness	40.5mm + 2mm SS410		
Diameter	7315mm ID		

Engineered repair solution

- Plastic Strain Index Study performed
- 2 bulge repair areas defined
 - #1 23m2
 - #2 27m2
- Design required additional structural thickness:
 - 0.56" (14.3mm)

Final repair information

Coke Drum D-001B	Coke Drum D-001B		
Bulge repair Area 1 (includes taper zone)	27.7m ² per layer		
Bulge repair Area 2 (includes taper zone)	30.6m ² per layer		
Filler material	Alloy 625		
Overlay thickness per layer	3/16″ (5mm)		
Total Overlay one layer	58.3m ²		
Overlay three layers	174.9m ²		

Repair schedule

Task name	Duration in days	Start	Finish	Resource names
Total duration on site	21	Mon 3/5/12	Fri 4/6/12	WSI
SS & QC onsite prep	2	Mon 3/5/12	Wed 3/7/12	WSI/MiRo
Safety Induction	1	Wed 3/7/12	Thu 3/8/12	WSI/MiRo
Unload qpuipment and site set-up	2	Thu 3/8/12	Sat 3/10/12	WSI/MiRo
Total Duration inside Coke Drum	26	Sat 3/10/12	Thu 4/5/12	WSI
Setp-up inside vessel & inspection	1	Sat 3/10/12	Sun 3/11/12	WSI/MiRo
Removal of excisting liner	5	Sun 3/11/12	Fri 3/16/12	WSI
Dewwatering bin activity	1	Fri 3/16/12	Sat 3/17/12	MiRo
Grid blasting	0,5	Sat 3/17/12	Sat 3/17/12	MiRo
Inspection (base materials)	0,5	Sat 3/17/12	Mon 3/18/12	WSI/MiRo
Bulge rapair area 1&2 (overlay)	15	Sun 3/18/12	Mon 4/2/12	WSI
Taper repair	2	Mon 4/12/12	Wed 4/4/12	WSI
Final inspection	1	Wed 4/4/12	Thu 4/5/12	WSI/MiRo
Demob from site	1	Thu 4/5/12	Fri 4/6/12	WSI/MiRo

Site preparation

A lot of activity around the unit

www.azz.com/wsi-europe

Mock-up: process evaluation & training

Removal of bonded cladding

Mock-up

"Skim" gouging with Carbon Electrodes **2-3mm thickness removed**

Surface preparation and gouging in the field

Surface "prepped" 410 cladding

Cladding removed

Gouging in process 2 – 3 mm material removed

Application of structural overlay

External preheat in place

Close-up of 1st layer

Repair execution

Areas 1 &2 4 machines each; total 8 machines

www.azz.com/wsi-europe

Repair execution

Welding 3 layers of Inconel 625 Total thickness 15mm

Deposit edge transition

Inspection by QC MiRO, TuV and WSI

- Hardness / layer
- Liquid penetrant inspection

Summary

Results

- Two bulged areas mitigated
- Alloy 625 installed
- Engineered Repair with 3 layers of overlay
- Additional Cladding areas repaired: surface defects
- Over 40 projects of this type have been performed and demonstrated years of successful operatio

Contact

Contact Information

Pedro Amador VP & Chief Technology Officer –WSI PedroAmador@azz.com + 1 (678) 728-9100 Norcross, GA, USA

wsi-europe@azz.com

www.azz.com/wsi-europe