

EFCOMM BUDAPEST 2-5 Oct 2017 LICENSING AN EPC PROJECT – CASE STUDY ON A FULLY MODULARIZED SRU AND AGE PACKAGE FOR GAS

FIELD IN EGYPT

Alessandro Buonomini Sulphur Recovery Process Group Leader Armando Costantini Senior Process Engineer

SUMMARY

- 1. Introduction
- 2. Design requirements
- 3. Basis of design
- 4. Technical challenges
- 5. Technical solutions proposed
- 6. Full modularization of the plant
- 7. Organizational innovations
- 8. Conclusion

INTRODUCTION

CASE STUDY

Project recently awarded to KT (May 2016)

□ SCOPE OF WORK

Licensing, engineering and procurement of the SRU-TGTU-AGE serving the sour gas processing facilities of one of the major gas field lately discovered in the Mediterranean Sea.

PLANT CAPACITY

Realization of 4 SRU packages with a capacity of 26 t/d of sulphur production each.

EXPLORATION IN PROGRESS

Gas field has been discovered two years ago. Exploration is still on going thus design has been adjusted during the Project execution to accommodate the changes on sour gas composition.

Sulphur Recovery Efficiency

SO₂ emissions at stack

Sulphur quality

Modularization of the Unit

Tight schedule and start-up within 2017

BASIS OF DESIGN

Five possible design cases of amine acid gas foreseen

Case A - Sizing Case

• Highest flowrate, H₂S concentration being 15% vol., 0.8% vol. HC + BTEX, presence of COS and Mercaptans

Case B - Alternative Case

• Same composition and flowrate of as case A with the addiction of 1% of ethane

Case C - Very Lean Case

• H2S concentration being 4.3%vol, 0.9% vol. of HC + BTEX, presence of COS and Mercaptans

Case D - Lean Case

• Flowrate about 50% of case A, H2S concentration being 6.89%, 1.7% vol. HC + BTEX , highest presence of mercaptans and COS

Case E - Turndown Case

• Same composition of case D but the flowrate is 22.5% of case D

Additional Acid Gas from SWS

- A small stream from Sour water stripper gas shall also be treated in the unit with a fixed composition and flowrate.
- No ammonia is present in such gas

Exploration progress: additional verification cases have been studied

Verification 1

- Highest acid gas flowrate from AGR: 10% more than Case A
- Same composition as for Case A

Verification 2

Highest contaminants concentration: higher impurities like COS and BTEX
Flowrate similar to Case A

Acid Gas quality

H2S as low as 4.3% vol. and BTEX

H₂S Enrichment needed to ensure temperature for contaminants destruction in Thermal Reactor

BTEX absorbed significantly by the amine and need to be destroyed in the Thermal Reactor because are poisonous for the Claus Catalyst

Presence of Mercaptans and COS Only slightly absorbed by the amine in the AGE section:

Increase of SO2 content at stack

small quantity absorbed shall be treated in the Thermal Reactor

Impurities destruction in Claus Section

Mercaptans absorbed by the Amine and BTEX Destruction need to be ensured in Thermal Reactor by:

Ensuring proper temperature

Ensuring proper residence time

Since the Acid Gas is so lean in H₂S, Thermal Reactor operates with Fuel Gas cofiring.

Acid Gas flowrate rangeability

Wide rangeability

11%-100% on sour gas flowrate

Proper flow rate must be ensured

Correct operation of all the equipment (column hydraulic, gas space velocity, etc.)

Temperature in Thermal Reactor

Proper operating range:

Optimization of Acid Gas enrichment and co- firing TOGETHER is needed

Optimizing the two parameters separately is counterproductive

Process performances

Overall Sulphur Recovery Efficiency

+99.9% Guaranteed

SO2 emissions

150 mg/Nm³ at 3% O₂ at dry basis

Hard to achieve with high CO2 and low H2S Acid Gas feedstock

Operation with regular MDEA not suitable and chilling unit is needed

Achievement penalized by the presence of COS and Mercaptans

10

Unit Arrangement

Considering the feedstock to treat each SRU package is composed by the following sections:

- □ Acid Gas Enrichment KT Multipurpose Absorber ™
- 2 x Claus trains
- □ Liquid Sulphur Degassing and Storage Section
- □ Tail Gas Treatment (TGT) Section
- Incinerator Section
- □ Wet scrubbing system

TECHNICAL SOLUTIONS PROPOSED

Unit Arrangement

Multipurpose Absorber™ technology:

- Acid Gas Enrichment and Tail gas absorption in a combined column
- Super-enrichment
- Optimization of solvent circulation
- □ Use of semi-lean from TGT absorption section for AGE section

TECHNICAL SOLUTIONS PROPOSED

Co-firing

Despite the enrichment achieved in the TGT Multipurpose Absorber[™], co-firing operation in the Thermal Reactor is required for impurities destruction. However:

- Coke formation shall be avoided
- □ CO2 production shall be minimized for H2S enrichment
- Optimization of temperature in the Th. Reactor: fuel gas flowrate vs enrichment

wol. Of H2S in the Acid Gas Recycle

Feed preheating

Combustion air and Acid Gas preheating required in order to:

- □ Minimize the fuel gas required for co-firing operation
- Aximize Th. Reactor temperature

In-line heater

In-line heater required for:

- □ Reducing gas production (H2 required for hydrogenation reactions)
- Re-heating of Tail gas

Hydrogenation Reactor temperature control

□ TGT WHB has been foreseen for temperature adjustment (2 passes)

Degassing system recycle

In order to achieve SO2 emissions, it has been required to recycle the H2S from liquid sulphur back to the SRU.

- Degassing air has been recycled to the Th. Reactor
- Sweep gas has been recycled to TGT section

SO2 Scrubbing system

Higher Mercaptans and COS content for some cases has been discovered once the Project started. In these cases SO2 emissions cannot be guaranteed with the proposed scheme.

To meet the SO2 emissions also in case of high impurities content, technical solution has been identified in a flue gas washing to remove the SO2 to 150mg/Nm3:

- Wet process scrubbing
- Caustic solution used as chemical
- Add-on» system: SO2 system will be installed with plant in operation after S/U

FULL MODULARIZATION OF THE PLANT

Project has been developed from the beginning fully modularized to match the tight schedule for the Start-up of the unit within 2017. Main advantages are:

- Minimization of construction activities
- Pre-commissioning and functional tests perfored at yard
- ❑ Modules delivered according to construction schedule

3D Model snapshot of Claus Thermal Reactor

Picture of one module at yard

ORGANIZATIONAL INNOVATION

Project vertical workflow has been reviewed to comply with the challenges of schedule and S/U of the Unit:

- Process design and engineering activities in parallel
- Procurement of equipment and bulk material based on the modules construction schedule
- Problem solving to avoid delay in the delivery
- Overlap between construction,
- engineering and precommissioning activities

Current progress of the construction work

CONCLUSION

The presented Case Study collects KT's experience on a recent awarded project realized from beginning to end in a very limited time (12 months).

All the shared technical and management challenges have been overcome thanks to:

Licensor knowhow

□ EPC Contractor expertise

□ Two indentities working sinergically

Maire Tecnimont Group's Headquarters

Via Gaetano De Castillia, 6A 20124 Milan P. +39 02 6313.1 F. +39 02 6313.9052 info@mairetecnimont.it

KT - Kinetics Technology

Viale Castello della Magliana, 27 00148 Rome P. +39 06 60216.1 F. +39 06 6579.3002 info@kt-met.it

www.kt-met.com

