

Keys To A Successful Delayed Coking Unit Revamp

By

John E. Collins, Technical Services Manager, CB&I

and

Malay Bagchi, Sr. Technical Service Manager, IOCL-Panipat Refinery

New Delhi, India

October 2013

Indian Oil Corp Ltd. and CB&I – Confidential Not to be disclosed or duplicated without written permission.

- Indian Oil Corporation Limited, or IOCL is an Indian state-owned oil and gas corporation
- World's 88th largest corporation, according to the Fortune Global 500 list
- The Indian Oil Group of Companies owns and operates 10 of India's 22 refineries with a combined refining capacity of 65.7 million metric tonnes per year
- Currently operates eight delayed coker units (DCUs) with combined capacity of 9.3 million metric tonnes per year

CB&I DCUs in India and Abroad

इंडियनऑयल

Indian Oil Corp Ltd. and CB&I – Confidential Not to be disclosed or duplicated without written permission.

Indian Oil Corp Ltd. and CB&I – Confidential Not to be disclosed or duplicated without written permission.

COKER HEATERS

MP Steam Generator

HCG (hot HCG (cold

- Complete feed characterization
- Maximum demonstrated capacity
- Existing facilities limitations
- Equipment reliability history
- Plant testing with *close coordination between owner/operator and process licensor*

Leverage Existing DCU Information

- Current knowledge of the unit is essential
 - to define the revamp scope,
 - to project schedule and planning, and
 - to budget, by minimizing scope
- Communications with licensor
 - to insure consistent expectations
 - to insure successful deliverables

- Operational Differences
 - Higher coke drum pressure
 - Lower unit recycle
 - Higher preheat temperature
 - Reduced cycle times
- Performance Differences
 - Product yield shift from liquid distillates to coke
 - Heavier HCGO end point
 - Shorter heater run lengths

	Capacity		Unit	CD Press,	CD Cycle	Temperatures, °C		s, °C
Operating Basis	ТРН	% Orig Cap	Recycle	kg/cm2g	Time, hrs	To Fract	To Htrs	Fr Htrs
Original DCU Data	298	99	11%	1.23	23-24	258	279	495
Original Design	300	100	10%	1.05	24	300	311	507
Revamp DCU Data	378	126	10%	1.31	18-19	283	302	500
Revamp Design	375	125	4%	1.05-1.47	18	300	311	507

- Operating basis for both the original DCU and revamp DCU were essentially satisfied
- The VR feed temperature was the most significant discrepancy
- The coke drum pressure ran high in the original DCU, but only rose slightly in the revamp design

- The DCU liquid product yields exceeded the original design basis.
- In the revamp DCU, coke yields have increased and C₅⁺ liquid yields have fallen slightly.

DCU Product Yields

- Revamp DCU Plant Data III Revamp DCU Design

- Similarly, the HCGO product quality was well within the original design basis during stable operations
- However, this critical product quality has increased considerably in the revamp operations

CBI

- VDU cut point
- Coke drum cycle time reduction
- Coking heater capacity
- Blowdown/CCD loading/reliability
- Coke handling and dewatering
- Gas processing and cooling
- Product recovery and hydraulics
- Product treating
- Safety and PSV/flaring facilities
- OSBL considerations

VDU Cut Point

डयनआयल

- Increasing the VDU cut point reduces the net DCU feed
- Higher cut point typically achieved by modifications to the flash zone (i.e. higher efficiency packing, revised feed/vapor horn) and/or vacuum system upgrades.

Cycle Time Reduction

Cycle Time Reduction

Must address – if not avoid – overlapping activities.

Hour 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	35 36
Drum 1		
Drum 2		
Drum 3		
Drum 4		
		┿┿┿┥
	Color Code	
Oalian		
Coking	18	
Switch Drums	0.5	
Steamout to Fractionator	0.5	
Steamout to Blowdown	1	
Slow water cooling	1.5	
Fast water cooling	2	
Drain coke drum	2	
Remove top and bottom heads	0.5	
Hydraulic boring/cutting	4	
Reheading/Pressure Testing	1	
Drum Heat-up	5	

- Some Common Cycle Time Reductions
 - Coke cutting (up to 2 hrs+)
 - Drum draining (~1 hr)
 - Unheading/reheading (1.5 hrs+ with replacement of semi-enclosed heads)
 - Step sequential efficiency (0.5 hrs+ in steam-out transitions, heating transitions)

- Decoking Activities to Preserve
 - Steam-outs to fractionator and blowdown
 - Slow and fast water quenching
 - Steam purge/pressure test
 - Hydrocarbon preheating

Coking Heater Capacity

- Fuel Heater Transfer Piping
 - Key Challenges
 - Sensitivity to coking rate and heater run lengths
 - Limited practical revisions to firebox dimensions
 - Panipat coker heater run length (typical):

Capacity MMTPA	Online Spalling Frequency	Steam Air Decoking Frequency	
	every 6	After 2-3 online	
2.4	months	spalling	
	every 3	After 2-3 online	
3.0	months	spalling	

Indian Oil Corp Ltd. and CB&I – Confidential Not to be disclosed or duplicated without written permission.

To Coke Drum Inlei

Coking Heater Capacity

Heater Revision	+Cap @ Same TST	Coil Pressure Drop	Comments
Operational – Increase	Up to 10%	10-15% higher due to	Heater efficiency will
Excess Air		increased flow	decrease up to 4%
Preheat – Higher Feed	Up to 15%	Up to 20% higher due to	Crossover temperature
Temperature		increased flow	increases due to reduced
			LMTD
Addition Roof Tubes	Up to 20%	Up to 40% due to	
		increased coil length and	
		flow	
Retrofit Replace Coil	Up to 5%	50% reduction	Added surface reduces
with Larger Tubes, Same			heat flux but larger
Spacing and Wall			diameter increased film
Thickness			temperature.
Retrofit Replace Coil	Up to 20%	25% reduction	Tube wall temperature will
with Larger Tubes,			be higher, but thicker
Increased Wall Thickness			schedule allows for much
			higher temperature rating

Blowdown System Loading

डियनआयल

• Cooling limitation \rightarrow revise fin fan coolers

Coke Handling and Dewatering

डरनआरल

- Review crane duty cycles
- Check crusher load rating
- Confirm OSBL facilities are sufficient
- Check pad drainage and fines settling
- Potential revisions to hydrocyclones and/or maze

Gas Processing and Cooling

- Rerating the wet gas compressor facilities
 - Possible rotor replacement
 - Possible driver revisions

डियनआयल

- Potential increase in driver rpm

- Ensure sufficient cooling in gas circuit
 - Possible addition of shells
 - Possible air cooler revisions

Indian Oil Corp Ltd. and CB&I – Confidential Not to be disclosed or duplicated without written permission.

- Highest capacity test run to find the bottlenecks
- Debottleneck existing limitations
- Choose most practical options to alleviate limit (larger pump impellers, new pump, piping modifications)
- Expect minimal revisions up to 125% of capacity

- Often overlooked, but can undermine revamp success
- Accurate feed characterization is crucial
- Current treating performance and utilities limitations also crucial

CBI

- Coke drum interlocks
- Coke cutting system safeguards
- Fired heater ESD upgrades
- Expanded PSV/flaring loads review and potential modifications (i.e. SISs e.g. HIPPS)

- Is steam supply sufficient?
- Can sour water strippers handle increased production?
- Are higher B/L pressures needed to reach tankage/downstream dispositions?
- Power distribution?

- Safety must be foremost consideration
- Determine environmental/permitting requirements well in advance of procurement/construction phase
- Long lead items coordination with shutdown schedule
- Constructability review for major equipment revisions
- Possibility of taking necessary hook-ups/pipe laying while unit onstream
- Pre and post shutdown work well defined

- Vacuum residue feed: 566 °C+ (1050°F) cut point
- 3-4 months+ heater run-lengths depending on feed quality/throughputs
- Low recycle: < 1.05 TPR
- Lower cycle time: < 16 hours
- Drum pressure: < 1.3 kg/cm2 for low pressure operations

- Product quality issues w.r.t HCGO
- Drum vapor velocity
- Fractionator Flashzone C-factor
- More Capacity

Who Else Needs A Revamp?

Thank You for Listening

Malay Bagchi bagchim@indianoil.in

डरन्सारल

John Collins jcollins@cbi.com