

are prevalent.

8

FusionStell[™] Applications

FusionStell[™] Coated 9Cr-1Mo Return Bends

Substrate compatibility

- + Certain substrates cannot be subjected to high temperature sintering
- + No problems with Stellite 6 & 12, but very hard coatings have limitations

	Carbon steels (1026, 4130, 1018)	Austenitic stainless steels (316, 304, 308, 303, 347)	Precipitation hardened steels (17-4 PH)	Martensitic steels (410, 420, 440C, 9Cr1Mo, F9, F91)	Ni-based alloys (C276, 800H, 718)
Common Stellite Stellite 6 & 12 (hardness range 40 – 48 HRc)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Very hard Stellite Stellite 720, Star J (hardness range 53 - 58 HRC)	\checkmark	\checkmark	\checkmark	440C 🗸 9Cr1Mo*	\checkmark
Tribaloy alloys T400, T800 (hardness range 53 - 56 HRC)	\checkmark	\checkmark	\checkmark	440C 9Cr1Mo X	C276 800H IN718

Stellite Alloy Chemistries

Alloys	Cr	w	Мо	С	Hardness, HRC
Stellite 6	29	4.5	-	1.2	39 - 43
Stellite 12	29	8	-	1.8	47 - 51
Stellite 1	31	12.5	-	2.5	51 - 58
Stellite 720	33	-	18	2.5	55 - 60

Deloro Stellite

+ Wear properties of the coating is determined by both the alloy chemistry and manufacturing process

Better Wear Resistance than Hardfacing

High Temp Erosion in FCCU environment

Weld Overlays in Return Bends

Limitations of Stellite weld overlays

- + Over-heating of substrate
- + High welding rate cause large HAZ
- + High Fe-dilution & Ni-dilution reduce wear properties of Stellite
- + Irregular surface effect flow rates

- + The FusionStell[™] process produce a 'pure' Stellite coating
- + Dilution only occur in diffusion zone ensuring a metallurgical bond

Deloro Stellite

+ Diffusion zone is typically 0.001" thick

Ultrasonic Testing of FusionStell coatings

- + No reliable method available to measure thickness and integrity of weld overlay Stellite coatings on ID's of return bends
- + UT results of FusionStell[™] coated 9Cr1Mo demonstrated that coating thickness can be measured successfully
- + FusionStell[™] process provides smooth surface for intelligent pigging

23

 + It is possible to inspect coating thickness of FusionStell[™] return bends in-situ at regular intervals to determine remaining wear life

Deloro Stellite

Weld overlay vs. FusionStell[™] cladding

+ Limitations of Stellite weld overlays on return bends

- + Welding parameters are 'hot' due to limited access and need for thick coatings
- + These 'hot' welding parameters results in very high dilution levels
- + Fe & Ni-dilution reduces the wear resistance of Stellite significantly
- + Weld overlay coatings cannot be inspected with UT due to cracking

+ FusionStell[™] offers superior coating properties

- + Demonstrated uniform coating deposition on various sizes of ID's
- + Coating integrity demonstrated diffusion bonded to the substrate
- + No Fe-dilution wear resistance superior to a weld overlay
- + Process repeatability will ensure consistency can be measured with UT
- + Enable pigging of the system with consistent coatings in the return bends

Where are Stellite[®] Alloys Used?

- Deloro Stellite
- + Family of alloys that exhibit excellent resistance to wear and corrosion
 - + Main constituents of Stellite alloys are Co, Cr, W, Mo, C
 - + Hardness from 32 63HRC
- + Stellite[®] alloys out-perform other materials under conditions when two of the following three conditions are present:
 - + Wear
 - + Corrosion
 - + High temperatures
- + Good corrosion resistance due to high Cr content (28 32%)

27

- + Corrosion behaviour similar to 316 stainless steel
- + Can be produced with a variety of manufacturing methods, including various casting and surfacing proceses

Suite of Manufacturing Processes

Wear-Resistant Coatings

- + HVOF coatings
- + Plasma Transferred Arc (PTA) welding
- + Tungsten Inert Gas (TIG) Welding
- + Submerged Arc Welding
- + Metal Inert Gas (MIG) Welding
- + FusionStell[™] coatings

Wear-resistant materials

- + Cobalt and Nickel welding consumables
 Power, rod, wire & electrodes
- + HVOF thermal spray powders

+ Coating equipment systems

- + Jet-Kote[®] HVOF coating systems
- + Starweld[®] & Hettiger[®] Plasma Transferred Arc (PTA) welding systems

Deloro Stellite

Contact Details

Daniel De Wet
VP: Technology & Business Development
Deloro Stellite Group
471 Dundas Street East
Belleville, ON, K8N 1G2
Canada

Tel: +1 (613) 968 3481 E-mail: <u>ddewet@stellite.com</u> Web site : <u>www.stellite.com</u>

- Louw De Jong Sales Manager & Refinery Specialist Deloro Stellite Inc.
 471 Dundas Street East Belleville, ON, K8N 1G2 Canada
- + Tel: +1 (604) 328 9723 E-mail : <u>Idejong@stellite.com</u> Website : <u>www.stellite.com</u>

29