Foster Wheeler Delayed Coking Best Practices

- FW employs a three prong approach
 1. Design details
 2. Operational techniques
 3. Operating instructions and training

- Most recommendations are good practice regardless of type of coke produced

Enclosed Slide Valve Bottom Unheading System

 Courtesy of Delta Valve
Delayed Coking Operational Optimization

Design Details

Heaters

• Use of 6-pass double fired coker heaters for larger coke drum module capacities and 3-pass double fired coker heaters for smaller drum module capacities.

• Continually developing new burner technology for lower NOx and optimal flame pattern

• Better on-line spalling procedures; more effective and efficient resulting in increased run lengths. On-line pigging also possible.

• Over 5 years run length between turnarounds

• Fully modularized design for lower installed cost.

More reliable and environmentally friendlier operation
Delayed Coking Operational Optimization

Design Details

Fractionator

- Water wash systems
- Wash oil spray chamber
- Fractionator bottom fines removal

Increase reliability. Reduce maintenance
Design Details

Coke Drums

- Single thickness drum wall
- Optimized crotch radius for weld build up hot box cone/straight wall detail
- Integral forged ring skirt design on cone/straight wall detail
- Use of anchor bolts with disk spring allows base plate flexibility
Design Details
Blowdown System

- Shed deck trays vs. disc and donut trays
- External steam heater
- Vent Gas recovery
- Wax tailings / Slop backwash to quench

Easier to operate and maintain
Design Details

- Operating station – enclosed, ventilated, line of sight.
- Remote top and bottom unheading
- Remote coke cutting
- Multiple safe & protected egress options with fire barriers
- Water sprays
- Safety interlocks on cutting system
- Drill stem guides
- Top slide valve unheading device, with enclosure for cutting tool
- Coke drum nuclear level detector located to ensure water fill

Safer to operate
Total Automation of Coke Drum Operations

Safer to Operate: No scheduled operations on structure deck
Delayed Coking Operational Optimization

Fouling Causes

- **Feedstock**
 - High sodium
 - High asphaltene
 - Incompatible crude blends
- **Coker Heater**
 - Low velocity in tubes
 - Low velocity injection media rate and/or wrong location
 - Excessive temperatures (crossover and/or COT)
 - Poor burner operation
- **Coker Fractionator**
 - Low overhead temperatures \rightarrow salting
 - High bottoms temperatures \rightarrow coking (rare, typically seen with HHCGO product operations)
Delayed Coking Operational Optimization

Fouling Prevention/Mitigation

- **Feedstock**
 - Minimize injection of caustic downstream of desalter
 - Ensure crude is well desalted
 - High softening point feeds may need diluent
 - Add aromatic feedstock (slurry / decant oil) to heavy oil residues to dilute fouling properties
 - Limit feedstock sodium to 10 wppm max (15 wppm max peaks)
 - Test feed blends for compatibility

- **Coker Heater**
 - Double-fired
 - Longer run lengths if processing heavy feeds
 - On-line spalling more effective
 - Better temperature control with individual convection sections
 - Off-line decoking: steam-air, pigging
Delayed Coking Operational Optimization

Fouling Prevention/Mitigation

- Coker Fractionator
 - Salting
 - Provide water wash system at the top of the tower
 - Increase overhead product endpoint
 - Coking
 - External quench for HHCGO product draw
Fouling and coking will occur; The best chance to control it is to monitor the heater operations:

- **Fouling Monitoring**
 - Heater Skin Temperatures
 - Firing Rate (Fuel Consumption)
 - Oxygen
 - Velocity Media

- **Process feed changes**
 - Rate
 - Quality

- **Draft**
- **O2**
- **Burner monitoring**
- **Firing rate/inlet temperature** – fouling of upstream exchangers
- **Prepare for the eventual decoking operation and use the method best for your situation**
Operational Techniques
Furnace Media Injection Rates
Fact or Fiction

- Never too much steam / condensate injection

- The rate is fixed and does not have to be varied

- Do not need to change injection locations

- Steam or condensate. It does not matter.

- **Fiction**: Especially with Condensate. It overloads the firing and pumps. No benefits

- **Fiction**: As the feed drops the injection, medium must increase to maintain velocities

- **Fact**: Unless the pumps are at capacity all the injection medium at heater inlet is preferred

- **Fact**: But for spalling condensate is the preferred medium
Delayed Coking Operational Optimization

Operational Techniques
Furnace Draft Control

- Draft should be measured under the first row of convection tubes
- High Draft causes more air leakage and lowers the heater’s efficiency, the higher the draft higher the leakage.
- High draft changes the burner flame pattern-longer flames.
- High draft can cause a heater to be firing/flue gas limited.
- Low draft could mean a positive and dangerous fire box, especially the sight doors
• Poor flame pattern
 – Draft too high or too low?
 – O2 too high or too low?
 – Burner registers opened/closed?
 – Burner tips plugged?
 – Considerably different fuels?
 – High fuel pressure?
 – Flame impingement?
 – Burners shut off?
 – Air temperature from preheater
Operational Techniques

Coke Drum Quench to Minimize Hot Spots

- Completely fill with water to about 3 meters above coke bed
- Use slow, optimized quench ramp rate based on experience
- 1/2 to 1 hour soak time
- Track quench and blowdown system water flows to verify that the coke drum is flooded with water
- Maintain controlled back pressure
Operational Techniques

Dynamic Manipulation

- Increase heater outlet temperature 2 to 3°C for final 2 hrs before switch
- Switch techniques: maintain forward flow (steam downstream of SP-6)
- Hold switch valve at midpoint for 15 mins during drum switch
- Switch from steamout to quench: continue steam until water enters drum (calculated value)
Delayed Coking Operational Optimization

Operating Instructions
Shot Coke Management

- Attention to audible & light alarms during structure operations
- All non-essential personnel to be off drum structure
- Do not unhead top until drum is vented & drained
- Be alert for telltales of possible hot spots
• Remain in shelter when the cutting system is pressurized
• Ensure sufficient positive forward flow of steam and/or water as feed is switched
• Use safety precautions when blowing the transfer line clean with steam
• Cutting operators to verify that coke handling operators are notified that coke will be exiting from the coke chute
Causes of Foaming

- Sudden depressurization of drums
- Inadequate heating / early switch / short cycle time
- Low Coker Heater coil outlet temperature (COT)
 - High fouling tendency or high VCM coke operations
 - Sudden shutdown of burners and relighting
- High velocity in drums
 - Higher feed rate / lower coking pressure
 - Excessive velocity medium / steam purges
- Suspected feedstock
 - High solid / fines content
 - High paraffinic feeds – cracks quicker than aromatic feeds
 - High sodium feeds – can increase the rate of cracking / rate of gas going through the liquids in the drum
Delayed Coking Operational Optimization

Foaming Prevention/Mitigation

Design
- Provide adequate Coke Drum outage
- Provide adequate Coke Drum diameter (make note of maximum vapor velocity limit)
- Provide adequate number and type of Coke Drum level detectors

Operation
- Optimize antifoam injection –
- Reduce unit feed rate to reduce vapor velocity in drum
- Increase Coker Heater coil outlet temperature (COT)
- Increase/introduce aromatic feed
 - Increase recycle → reduces foam height since recycle is aromatic
 - Add decant oil → lowers feed blend paraffinicity, viscosity, and surface tension but not enough to do away with silicone injection
Foaming

FW Guidelines for Antifoam Injection

- FW guidelines for injection rates and flows
 - 50% injection at 2 hours before switch / 80% of gamma level range
 - 100% injection at 80% of gamma level range
 - Continue injection until steamout to Blowdown operation and Coke Drum pressure has stabilized
Delayed Coking Operational Optimization

Cycle Time Optimization - Minimizing Thermal Stress

- Long slow quench ramp
- Automated quench programs (step versus ramp)
- Maximize preheat (minimum coke drum skin temperature)
- Coke drum TI monitoring program
 - Additional 32 TI’s
 - Monitor gradient (cooking & quench)
 - Monitor max temperature differential
Delayed Coking Operational Optimization

Cycle Time Optimization

- **Unheading**
 - Manual (more time required than automatic)
 - Automatic
 - Remote operation
- **Automated Cutting Systems**
 - Vendor supplied (Flowserve and Ruhrpumpen)
- **Pressure Test**
 - 15 minutes minimum even with slide valves
 - Ensures that water vaporized from drum walls during depressure
 - Minimize water going to coke condensate and blowdown
 - Too much water may lead to pump cavitation
- **Drum Switch**
Delayed Coking Operational Optimization

Maximization of Distillate Yields

- Coker yields are dependent on feedstock quality, operating conditions, recycle, and cycle time
- Several operational procedures are available to optimize the unit during the coking cycle
- Addition of aromatic feed can be beneficial in some cases
- Additive study applications are still in development
Maximization of Distillate Yields

- Crude type / source
- Feedstock quality
 - TBP cutpoint / distillation
 - API gravity
 - Viscosity
 - Concarbon Residue (CCR)
 - Asphaltenes (heptane insolubules / HIS)
 - Sulfur
 - Nitrogen
 - Metals / ash
- Operating conditions
- Coking cycle time
Effect of Operating Conditions
Rules of Thumb

- **Process Variables**
 - Temperature: Higher is better
 - Pressure: Lower is better
 - Recycle: Lower is better, but...

- Lower recycle increases HCGO
 - End point
 - CCR
 - Heptane insolubles (nC7 asphaltenes)
 - Metals (Ni + V)
Impact of Recycle on Yield Distribution

Yield Variation with Increasing Recycle

- Light Distillates
- Coke
- HCGO
- Gas

Recycle %
Delayed Coking Operational Optimization

Effect of Coking Cycle Time

Rules of Thumb

• Range: 12 – 24 hours for fuel grade cokers
• Typical: 18 hours for new, fuel grade cokers
• Usually set by refinery operational capabilities and requirements
• Can use shorter cycles, e.g. 12 hours, for revamp designs to allow for processing more feed capacity
 – Additional stress on Coke Drum
 – Tendency to reduce Coke Drum life
Optimization During Coking Cycle

- Reaction rates need to be increased using increased temperature to account for limited reaction time; prevents hot spots
 - Ramp up COT by 2 – 3 °C, 2 hours before switch
 - Bring COT back to normal, 1 hour after switch
- Coker Fractionator swings during Coke Drum switch and preheat
 - Increase total draw product pan levels
 - Increase HCGO PA temperature (PA steam generator duty varied)
 - Leave switch valve in midpoint position for 15 minutes to minimize heat loss
- Coke Drum Quench
 - Ramp schedule / adequate quench time
 - Water level above coke bed with 30 minute soak
 - Thermal monitoring
Delayed Coking Operational Optimization

Optimization During Coking Cycle

- Coke Drum Level Detectors
 - Continuous gamma ray – only detects fluid at a level
 - Nuclear point density detector (neutron backscatter / NBS) – can distinguish between coke, foam, and water
 - FW typical design:
 - One nuclear point (density) detector 0.6 m (2 ft) below TTL (cuts off quench water pump on high pressure)
 - One nuclear point (density) mid point between normal coke bed height and TTL (alarm for water fill during quench)
 - Continuous level to cover coke bed height 2 hrs before switch to mid point between normal coke bed height and TTL
 - Bottom nuclear point (density) detector at 25% fill (coke volume)
Delayed Coking Operational Optimization

Coke Morphology

- **Shot**
 - High asphaltene feedstock
 - Low pressure / low recycle
 - Max liquid / min coke yields
 - CCR / nC7 < 2
 - 30-50 HGI
 - Fuel grade

- **Sponge**
 - Low asphaltene feedstock
 - High pressure / moderate recycle
 - Lower liquid / higher coke yield
 - 40-70 (Hvy) / 70-100 (Lt) HGI
 - Fuel / anode grade
Delayed Coking Operational Optimization

Coke Morphology

• Needle
 – Low asphaltene feedstock / aromatic tar
 – Very high pressure / high recycle
 – 70-110 HGI
 – Coke production operation
 – Electric grade

• “Rules of Thumb” (Fuel Grade)
 – Raise COT 2.8 – 3.9°C in final hours of coking or for 1% decrease in VCM
 – Raise COT 0.6 – 1.1°C for one hour reduction in coking cycle time
Training

- KnowledgeWeb Plus online training program for Foster Wheeler Delayed Coking Technology is an efficient tool to improve on-boarding of new hires and up-skill existing workers in DCU safety and operations

 - 24/7 Real time access anywhere, anytime with the internet and a browser
 - Customized: Unit / Site Specific
 - Helps to maximize yields by applying the knowledge of the unit designers
 - Helps to improve reliability by incorporating the knowledge and maintenance procedures of the different process equipment.