Delayed Coker Blowdown System
Water Reuse

Presented by Mitch Moloney of ExxonMobil Research & Engineering
mitchell.j.moloney@exxonmobil.com
Budapest Hungary coking.com October-2017

This material is not to be reproduced without the permission of Exxon Mobil Corporation and coking.com.
Delayed Coker Blowdown System Water Reuse

Topics:

(1) Blowdown System Overview
(2) Recycling BD Water
 => Constituents, Methods, Incentives & Risks
(3) Water System Layouts
(4) Coker Water Balance
(5) Adding Flash and/or Bleach Facilities

Special acknowledgement to Fritz Bernatz for his detailed evaluation and development of this technology
Delayed Coker Blowdown System Water Reuse

General Overview of BD System Operations

(1) Receive Coke Bed Vapors during Stripping & Quenching

- Highest Normal Hydrocarbon Load => During Steam Stripping
- Highest Normal Steam Load => During Peak Quenching

(2) Receiving Coke Drum and/or Heater PRV Discharges

- Highest Abnormal Hydrocarbon Loads
 - => Majority of newer units receive the coke drum PRV
 - => Older units may receive furnace PRV because the Wilson-Snyder was not designed for pump shut-in pressure

(3) Receiving Wet (and Dry) Coke Drum Warm-Up Condensate / Gas

(4) Receive Start-Up and Shutdown Drain Slops

(5) Handle Foam Entrainment or a Coke Foamover
Delayed Coker Blowdown System Water Reuse

General Overview of BD System Operations (cont’d)

Objectives

Cool Vapors on a Batch Basis

Separate feeds into five products

=> Heavy BD oil

=> Light BD oil

=> Non-condensable Gas

=> Sour Water

=> Coke

Be a Robust and Reliable Operation
Delayed Coker Blowdown System Water Reuse

Modern Blowdown Design - 1

BD Condensers

PRV's

≤375°F

Heavy Drains

8 - 40 psig

300°F

Cooler

Demulsifier

Min Flow

Settler

NC

SWS

Seal Pot

Flare

Water

BD Gas

Lt Slop

Slop

≤375°F

≥375°F

Quench Vapors

Warm-Up Vapors

Make-up Gas Oil

Warm-Up Condensate

375°F

300°F

Steam Heater

Hot Contactor

Low Pres Lt Gases

2 - 10 psig

150°F

NC

NC

NC

Make-up Gas Oil

ExxonMobil

October-2017 coking.com Budapest
Delayed Coker Blowdown System Water Reuse

Small Blowdown System & Water Tank

Hot Contactor

BD Condenser
Fin Fans

Cutting & Quench
Water Tank
Delayed Coker Blowdown System Water Reuse

Blowdown Condenser Fin Fans

BD Condenser
Inlet
Distribution Piping

Fin Fan Bay
Isolation Valves
Delayed Coker Blowdown System Water Reuse

DCU Blowdown Water Constituents*

H₂S, NH₃ and phenols will vary as the coke drum cycles from steam stripping to the end of coke bed quenching. Many factors will affect the concentrations:

- Resid type (S, N, geographical origin)
- Steam stripping operations (timing, duration, rates)
- Coke Bed size
- Blowdown System operations
 + Is water recycled for vapor desuperheating?
 + Size of BD Settler
 + Are downstream settling tanks used?

<table>
<thead>
<tr>
<th>BD Stage</th>
<th>H₂S</th>
<th>NH₃</th>
<th>Phenols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam</td>
<td>100 - 200</td>
<td>40 - 120</td>
<td>15 - 60</td>
</tr>
<tr>
<td>Quench - start</td>
<td>100 - 400</td>
<td>100 - 175</td>
<td>15 - 60</td>
</tr>
<tr>
<td>Quench - mid</td>
<td>130 - 500</td>
<td>150 - 200</td>
<td>15 - 50</td>
</tr>
<tr>
<td>Quench - end</td>
<td>20 - 120</td>
<td>50 - 200</td>
<td>15 - 20</td>
</tr>
</tbody>
</table>

* Proper sampling protocols are needed to get accurate results
Delayed Coker Blowdown System Water Reuse

Recycle of Condensed Blowdown Water

(1) Joliet Refinery has been recycling blowdown water since start-up in early 1970’s

=> Cited in Oil & Gas Journal 23-apr-1973
=> Heritage Mobil Oil technology
=> Blowdown water is flashed in closed-roof tank with vapor recovery
=> Coker water purge rate is high due to watery sludge addition and fines maze clean out with fire water, which reduces odors also due to dilution of constituents

(2) A refiner, no longer owned by ExxonMobil, has been recycling settled blowdown water to the cutting/quench water tank for over 30 years

=> Sodium Hypochlorite (Bleach) is added to cutting water in the fines settling lane
=> Coker water system purge rate was adjusted to balance sludge water addition
Incentives to Recycle Blowdown Water

Reduce Sour Water Stripper (SWS) Loadings

A typical SWS consumes around 1.3 lb of 150# steam / gal of feed, which allows the energy incentive to be calculated

\[
40,000 \text{ gal/drum} \times 1.5 \text{ drums/D/train} \times 365 \text{ D/yr} \\
\times 0.95 \text{ SF} \times 1.3 \text{ lb/gal} \times \$ Y/1000 \text{ lbs of steam}
\]

\[\Rightarrow \$Z ZZ \text{ k/yr for each coke drum train} \]

conservatively assuming an 18 hr coking cycle

Reduced inorganic loading to the Waste Water Treatment Plant

Avoidance of capital expenditures for more SWS capacity

Reduced raw water make-up to the DCU

Elimination of mold in the quench/cutting water system and area
Delayed Coker Blowdown System Water Reuse

Risks Considered with Recycling BD Water

- Exposure to low level H₂S and NH₃ emissions in the air
- Odors
- Increase in dissolved hydrocarbon levels in the recycled water

 => Function of BD System Water-HC Separation Efficiency

- Formation of chlorinated hydrocarbons
- Increased corrosion in cutting/quench water system

WWT Effects:
- Excess chlorine
- SO₄
- Chloramines
- AOX (Adsorbable Organic Halides)

All risks were evaluated and determined to be acceptable with proper facilities design and procedures
Delayed Coker Blowdown System Water Reuse

Coker Water System - Sluiceway

[Diagram of the Coker Water System - Sluiceway]
Delayed Coker Blowdown System Water Reuse

Coker Water System - Pit

Coke Drum

Overhead Gantry Crane

Conveyor to barge, rail or truck

Settling Labyrinth or Lane

Coke Pit

Cutting Water Tank

ExxonMobil

October-2017 coking.com Budapest
Delayed Coker Blowdown System Water Reuse

Coker Water System - Pad

- Coke Drum
- Coke Pad
- Crushers
- Conveyor to barge, rail or truck
- Settling Labyrinth or Lane
- Cutting Water Tank

ExxonMobil
October-2017 coking.com Budapest
Delayed Coker Blowdown System Water Reuse

Water Balance

Water Added to System:
- => Big Steam
- => Sludge Water
- => Pump Seal and Instrument Flushes
- => Water added for cleaning purposes
- => Rain

Water Leaving System:
- => Coke Moisture
- => Evaporation
- => Blowdown Water – Yes or No?
- => Addition or Purge?
Delayed Coker Blowdown System Water Reuse

Water Balance – The Numbers

Basis:

=> 50 kB/D or 331 m3/hr or 8230 metric ton/D

=> 4-drum coker on 14 hour coking cycle; 28 hr drum cycle

<table>
<thead>
<tr>
<th>Water Added to System</th>
<th>Base Case BD to SWS</th>
<th>BD Water Recycled</th>
<th>Sludge Added</th>
<th>Sludge + Fines Lane Cleaning</th>
<th>Sludge + Fines Lane Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kgal / Day</td>
<td>m3 /D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=> Big Steam</td>
<td>13</td>
<td>49</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>=> Sludge</td>
<td>0</td>
<td>0</td>
<td>45</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>=> Rain (annual avg)</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>=> Pump Seal and Instrument Flushes</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>=> Water added for cleaning purposes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>58</td>
<td>228</td>
<td>304</td>
<td></td>
</tr>
</tbody>
</table>

Water Leaving System:

=> Coke Moisture	47	178	178	178	
=> Blowdown Water	132	500	0	0	0
=> Evaporation	3	11	11	11	11
	167	631	39	115	

Make-up / (Purge)

Drain = 220 kgal / Day	833 m3 /D
Cutting Water = 360	1363 m3 /D
Recycled Water from Pit/Pad = 580 kgal / Day	2196 m3 /D
Delayed Coker Blowdown System Water Reuse

Flashing the Blowdown Water

- Minimum of 25% removal of H$_2$S and NH$_3$ at 0.14 barg (2 psig),

- Flashing at lower pressure is recommended to increase H$_2$S and NH$_3$ removal, but especially to remove hydrocarbons

 => Proper upstream blowdown operations are needed to properly separate oil and water

 => Steam Eductor on flash drum can create a very low pressure (0.01 barg)
Delayed Coker Blowdown System Water Reuse

Bleach Chemistry – H₂S

Sulfide Reactions

At coker BD water pH range of 7.5 to 9.0 sulfides are typically in the form HS-

Rapid Reactions

Bleach dissociation

\[
NaOCl + H₂O \rightarrow HOCl + Na⁺ + OH⁻
\]

\[
HOCl \rightleftharpoons H⁺ + OCl⁻
\]

(In equilibrium at 40-60% range based on pH)

Reaction of Bleach with sulfides at low excess chlorine (under acidic conditions)

\[
H₂S + HOCl \rightarrow H⁺ + S⁰ + Cl⁻ + H₂O
\]

Reaction of Bleach with sulfides (under alkaline conditions)

\[
H₂S + 4 NaOCl > H₂SO₄ + 4 NaCl
\]
Ammonia Reactions

Chlorine/Ammonia reactions at a ratio of less than equimolar will not form free chlorine. Blowdown water treatment will be in dilute aqueous solutions.

\[
\text{HOCl} + \text{NH}_3 \rightarrow \text{NH}_2\text{Cl} \quad \text{(monochloroamine)} \quad + \text{H}_2\text{O}
\]

- Ratio of chlorine to ammonia is equimolar (5:1 by wt) or less
- Monochloroamine preferred at pH >7.5

Organic compounds

\[
\text{R} + \text{HOCl} \rightarrow \text{RCl} + \text{H}_2\text{O}
\]

- Expected organic compounds are slow to react.
- Any excess bleach will react with ammonia

Monochloroamines are slow to react with organic matter
AOX Considerations for the Waste Water Treating Plant

- Adsorbable Organic Halides (AOX) is a measure of the organic halogen load... These organic halides are released in wastewater from the oil, chemical, and paper industries.
- Chloro-organics are a type of AOX
- Chloro-organics *may* be formed by bleach addition to the Blowdown reuse water and may be sent to the WWTP through the water purge.
- This should be considered relative to WWTP permits.
Delayed Coker Blowdown System Water Reuse

Example Bleach Operations for a Hypothetical DCU

Basis

=> 50 kBD (331 m3/h) fresh feed

=> Sulfur = 4.5 wt%; Nitrogen = 0.8 wt%

Design Basis needs to determine how much of the worst case sulfides and ammonia need to be treated. One option is:

=> Sulfide treatment at stoichiometric level

=> Ammonia treatment at 50% stoichiometric level

Other factors to consider:

=> Benchmarking with other water-chemical dosing programs

=> Can you take credit taken for pre-flash of water?

Facility design should have % overdesign factor