Computational Fluid Dynamics (CFD): An Effective Tool for FCC Design, Improvement and Troubleshooting

CatCracking.com Safety Seminar – Düsseldorf, October 2011

CFD Modeling Philosophy

- Two CFD modeling approaches for multiphase gas-solid systems
 - Continuous approach
 - Gas phase as fluid; solids phase as pseudo fluid
 - Discrete approach
 - Gas phase as fluid; solid phase as solid particles
- CFD software used within the Alliance
 - Fluent
 - Barracuda by CPFD Software LLC
 - Software selected depends on problem

Shaw[®] a world of Solutions[®]

CFD Application in Alliance FCC Technology

- Research and Development
 - Development and design of new technology
 - Cost-effectively screen new designs
 - Minimize cost of cold-flow testing
- Design
 - Developing design criteria
 - Fine tuning and optimization
- Unit Revamps and Troubleshooting
 - Design optimization
 - Diagnose root causes
 - Validating solutions

Reactor RSS Development

- Validate cold flow results with fluent CFD software
- Optimize design with CFD
- Develop design criteria

Regenerator RSS Development

Objective

- Reduce catalyst loss rate
 - Replace tee separators in a high efficiency combustor
- Improve cyclone reliability
- Regenerator too small to increase number of cyclones to reduce inlet velocity
- Adapt reactor RSS design
 - No cold flow work
 - CFD modeling only

00.00.20

Regenenerator RS² Development

- Replace Combustor Tee Separator
- High separation efficiency of RS²
- Improved cyclone reliability
- Increases regenerator capacity
- No interference with cyclones diplegs

Regenenerator RS² Development

BEFORE

AFTER

RS² Development for External Riser System

Spent Catalyst Wye Bathtub Distributor Design Optimization

Spent Catalyst Distributor CFD Modeling

Spent Catalyst Wye Bathtub Distributor Design Optimization

CFD used to determine optimum design parameters

 Improved catalyst distribution along its length

Axens

Regenerator Fluidization Optimization

CFD Modeling to study the effect of air ring location on fluid bed hydraulics

Regenerator Fluidization Optimization

Staggered ring

Relocate inner ring to BTL

Relocate middle and inner ring To BTL

Stripper Troubleshooting

- Influence of reactor fluidization on stripper performance
- CFD used to study effect of reactor fluidization on stripper operation
- Stripper upset caused by de-fluidized catalyst entering stripper

Reactor RS² Dome Steam Specifications

Contours of mole fraction of HC vapor (red). Steam is blue.

CFD used to develop new design criteria for dome steam flowrate.

Increase dome steam flow

00.00.201

racking No.

Conclusions

- FCC Alliance committed to improving FCC hardware through increased use of CFD
 - Reduce technology development cost
 - Bring new technologies to market faster
 - Improve FCC hardware design
 - Verify design without cold flow testing
 - Increase reliability
 - One of the key troubleshooting tools
- CFD is a cost-effective tool that is useful in most aspects of FCC design

