Coke Drum Monitoring, Inspection, Assessment and Repair for Service Life Improvement

Tej Chadda Technical Service Director, BSG, Foster Wheeler USA

Coking

Coke Drum – Transient Temperature Plot @ various cycles & locations

HRS.

Coke Drum (Monitoring using Skin Tl's)

CONFIDENTIAL THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION OF FOSTER WHEELER USA CORPORATION AND IS TO BE USED, AND REPRODUCED ONLY IN ACCORDANCE WITH THE WRITTEN PERMISSION OF FOSTER WHEELER USA CORPORATION.

Typical Outline of Coke Drum Cyclic Operation & Fatigue Damage

Unlike any other Pressure Vessel, Coke drums and overhead piping systems undergo severe thermal operation and fatigue damage including the following:

- 1. Severe Daily temperature changes (> 800 F)
- 2. Severe Thermal cycles (> 250 cycles per year)
- 3. Banana (Horizontal) Movement during quench 4" to 6"
- 4. Severe Thermal Gradient during quench & coking
- 5. Vibration during coke cutting, quench & coking

Coke Drum Cyclic Operation & Approach to Extend Fatigue Life

"ROOT CAUSE OF FAILURE"

- 1. Thermal Gradient after Switch to Coking
- 2. Thermal Gradient during Water Quench
- 3. Circumferential Temperature Differential during quench

Pro-Active Approach to Extend Fatigue Life

- 1. From very beginning, monitor temperature changes
- 2. Minimize Thermal Gradient / Iterative Process

3. Thermal Operation and Reliability working together

Purpose of Coke Drum & Piping Monitoring, Inspection & Assessment Programs

- A. <u>Purpose of Coke Drum & Piping Monitoring</u>
- To extend drum fatigue & service life
- Reduce cost and Improve safety of operation
- Avoid unplanned shutdown
- Raise awareness for Operation & Reliability issue
- B. How / When to Implement Monitoring program
- Implement (a) pro-active coke drum thermal monitoring program from start of thermal operation
- Implement (b) pro-active routine inspection program.
- Optimize coke drum operation Thermal Gradient
- Minimize piping vibration

Coke Drum & Piping Monitoring – Key Items

A. <u>Coke Drum Monitoring</u>:

- 1. Temperature Gradient during Coking & Quench
- 2. Circumferential Temperature Differential
- 3. Banana (Horizontal) Movement
- 4. Coke drum shell profile / Bulging
- 5. Vibration during coke cutting, quench & coking
- 6. Coke drum anchor bolts / concrete

Coke Drum & Piping Monitoring Topics (cont'd)

B. <u>Piping Monitoring</u>:

- 1. "Cold & Hot" clearances for system movement
- 2. Vibration during coke cutting, quench & coking
- 3. Banana (Horizontal) Movement
- 4. Thermal Fatigue & High Stress Nodes
- 5. Vibration Induced Fatigue & High Stress Nodes

Skirt Crack @ Weld build-Up Junction

Lap Joint Slotted Skirt Junction Crack (Crack Propagation @ Key Holes)

Coke Drum – Shell Bulging

Critical Weld Junction (Circumferential Seam)

Coke Drum - Anchor Bolt Issue

Broken Anchor Bolt of DCU Coke Drum

Factors Affecting Coke Drum Fatigue Life, Safety and Reliability

- 1. Mechanical Design / Stress Riser
- 2. Fabrication / Stress Riser
- 3. Thermal Operation / Thermal Gradient
- 4. Monitoring Temperature using Skin TI's
- 5. Inspection of Shell / Cone and Critical Welds
- 6. Pro-active assessment to Optimize coke drum thermal operation

Assessment / Repair of Coke Drum – Critical Areas

Coke Drum

- 1. Skirt Junction Crack / Repair
- 2. Shell Bulging / Crack / Repair
- 3. Circumferential Weld Crack & Clad Restoration
- 4. Anchor Bolts Necking, Crack / Repair
- 5. Concrete Crack
- 6. Nozzle Crack / Repair

Coke Drum - Common Damage Modes, Assessment and Repair

- Cracking and bulges of the drum shell mainly at / near circumferential seams. Assessment for high stress, future crack location and shell can replacement etc.
- Thermal fatigue cracking of skirt weld to drum shell / knuckle junction. Stability & Stress assessment during skirt crack repair (shutdown or on-line) & for LPWHT.
- Anchor Bolts Failure and / or Concrete Crack and assessment to modify by using disk springs
- Overhead nozzle and Piping Component failure cracking (Vapor, PSV) and assessment for thermal fatigue, vibration induced fatigue, NDE, weld finish etc

Shell Bulge assessment for Coke Drum Routine Inspection, Safety and Life Improvement

- Perform Stress Assessment (FFS) of "Bulged" drums per Code and modify inspection programs
 - Determine "critical stress locations" based on ASME Code and identify potential future crack locations for routine monitoring and inspection program
 - Perform Stress Assessment per Code considering P/T for all Operating and Design cases
 - De-rate Pressure / Temperature, as required
 - Perform Structural buckling and stability study in per Code and FW guideline considering all operating cases including seismic

Coke Drum - Shell Bulge assessment (FFS)

Stress Tensor Z-Z ordinate System 1 Ibf/(in^2) 34610 20550 17615 14679 11743 8807.3 5871.5 2935.8 as in Red are r-stressed -315° -180° 90° 90° 225° 0°

Axial Stresses in Drum: Design Case (70psi @ 900°F)

Membrane + Bending Stress (Inside Surface)

Outline of FW's Pro-Active Thermal Monitoring, Routine Inspection & Assessment Programs

- 1. Monitor coke drum skin temperature / gradient using (TI) and keep within "design thermal guidelines"
- 2. Inspect shell bulges and cladding cracks.
- Inspect critical welds of coke drum and piping. Provide 3. means for routine visual inspection
- 4. Verify (bowing) "banana" movement of coke drum
- 5. Verify "free" unobstructed movement of drum & piping
- Monitor Vibration of drum and overhead piping. 6.
- 7. Perform Stress assessment / Optimize thermal operation

For details of CD Monitoring, Inspection and life improvement at Reliance since year 2007,

Ref: FW / Reliance Joint Presentation in 2013 Coking.com conference OSTER 18

Current Industry Trend/ Thermal Fatigue Considerations

- Shorter coking cycle
- Larger coke drums
- Severe thermal gradients during heat-up / switch to coking and during "Quench"

Coke Drum (TI's & Monitoring)

Operational assessment & Thermal Gradient Optimization program for Coke Drum Life Improvement

- Assess Thermal Operation and Optimize Thermal Gradients (ramps) to address the following key parameters:
 - Pre-Heat temperature prior to switch to coking
 - Duration of switch to coking
 - Transient thermal ramp during 'Heat-Up' cycle
 - Transient ramp during 'Quench' cycle
 - Optimize quench rate and schedule

Finite Element Analysis of Skirt Junction

Fatigue Life Evaluation of <u>Coke Drum Support Skirt / Shell Junction</u> Using Transient Thermal Stress Analysis

Transient Temperature during Heat-Up / Switch to Coking (at Skirt Junction)

Skirt Displacement during Heat-up

Lap Joint Slotted Skirt Junction

Coke Drum Skirt / Weld Build-up / Cone Junction

Forged Y-Ring Skirt

Inspection Lanes at Critical Weld Seam (Removable Insulation)

FW's Programs for Coke Drums Life / Safety Improvement by Thermal Monitoring, Routine Inspection and Assessment

	On-line/Routine	Offline / Shutdown
Skirt	Critical Welds including @ Inspection lanes	Critical Welds including @ inspection lanes
	Anchor bolts and concrete crack	Anchor bolts and concrete crack
	TXI data review: stress & thermal operation assessment (Thermal Gradient)	
Shell	Banana Movement Critical Welds @ Inspection Lanes	Critical Welds including @ Inspection Lanes
	Laser Scans/Bulge mapping: Assessment for	Hardness surveys of clad/welds
	FFS and future "crack" location.	Nozzles / Shell / Top Head Intersection
Piping	High Stress Nodes / Piping Vibration / Critical Welds subject to Thermal Fatigue and / or Vibration induced fatigue	High Stress Nodes and Critical Welds
	Critical Supports	Critical Supports
FOSTER		29

Coke Drum: FW's Thermal Monitoring, Routine Inspection and Assessment Programs (cont'd)

FOSTER