Best practices to increase productivity and reliability of delayed coker units

Jesus R. Cabello – Director of Technical Services Downstream

Coking and CatCracking Conference • New Delhi, India • October 2013
Best practices to increase productivity and reliability of delayed coker units

Background

High historical profit margins are associated with a delayed coking unit, so it is important for refiners to maximize its productivity and reliability.

However delaying coking is a unique process with unique challenges to manage:

- Batch process
- Extreme temperatures
- Highly viscous feed
- Coke-cutting and handling
Best practices to increase productivity and reliability of delayed coker units

Objectives

1. Maximize Reliability and Operability

2. Improve Safety and Reduce Environmental Impact

3. Minimize Operating, Maintenance and Investment and Operating Costs
Best practices to increase productivity and reliability of delayed coker units

Reliable Design Data

Continued update of yield model based on operating and pilot data
Best practices to increase productivity and reliability of delayed coker units

Heaters

Use of 6-pass double fired coker heaters for larger coke drum module capacities and 3-pass double fired heaters for smaller coke drum capacities

Longer run lengths. Allows use of on-line spalling
Best practices to increase productivity and reliability of delayed coker units

Heaters

- Better on-line spalling procedures; more effective and efficient resulting in increased run lengths. On-line pigging also possible.
- Over 5 years run length between turnarounds
- Fully modularized design for lower installed cost
Best practices to increase productivity and reliability of delayed coker units

Coke Drums

- **More Robust Design**
 - Single thickness drum wall.
 - Optimized crotch radius for weld build up hot box cone/straight wall detail.
 - Integral forged ring skirt design on cone/straight wall detail.
 - Use of anchor bolts with disk spring allows base plate flexibility.

- **Inspection Lanes and removable insulation support for frequent inspection of critical weld seams**

- **Monitoring and Inspection Program**

- **Operating Guidelines**

Over 10,000 cycles in lifetime
Best practices to increase productivity and reliability of delayed coker units

Blowdown System

- Shed deck trays vs. disc and donut trays
- External steam heater
- Vent Gas recovery
- Wax tailings / Slop backwash to quench

Easier to operate and maintain
Best practices to increase productivity and reliability of delayed coker units

Fractionator

- Water wash systems
- Wash oil spray chamber
- Fractionator bottom fines removal

Increase reliability. Reduce maintenance
Best practices to increase productivity and reliability of delayed coker units

Coke Drum Lines and Valves

- Increased use of steam purged valving for better operations (SP8 – 14)

- Independent coke drum overhead lines for better piping stress with large diameter, low pressure and high capacity systems.

- Use of more interlocks to prevent hydrocarbon to atmosphere

Easier, Safer and Environmentally Friendlier Operation
Best practices to increase productivity and reliability of delayed coker units

Coke Cutting and Dewatering

- Improved Maze designs: Improves fines recovery, reduce overflow
- Decoking Water Tank: size & Internals
- Drain of Coke Drum to Pit / Pad
- Electric Drivers for Winch and Rotary Joint

Easier, Safer and Environmentally Friendlier Operation
Best practices to increase productivity and reliability of delayed coker units

Safety

Process-specific hazards:

- Coke drum switching
- Coke drum head removal
- Coke cutting
- Coke transfer

Easier and Safer Operation
Best practices to increase productivity and reliability of delayed coker units

Environmental

- Low / ultra-low NOx burners / Selective Catalytic Reduction
- Coke wetting systems
- Breakers vs. crushers
- Enclosed coke storage & conveyors
- Vent gas Ejector for Coke Drum Depressurization

Environmentally Friendlier Operation
Best practices to increase productivity and reliability of delayed coker units

Automation and Controls

- Automated Batch vs. Total Automation Operation (no operators in structure)

Easier and Safer Operation
To protect the investment in a Delayed Coker and maximize profitability, a skilled workforce is required to:

- Efficiently operate and maintain the equipment
- Support the process
- Improve Safety
- Minimize Environmental Impact
Best practices to increase productivity and reliability of delayed coker units

Training

Industry Challenges Driven By:

- Skilled Workforce Attrition
- Institutionalizing Best Practices
- Compliance Mandates
- Training Resource Limitations
Best practices to increase productivity and reliability of delayed coker units

KnowledgeWeb™ Online Training

- Improves operator performance with a dynamic learning environment
- 24/7 Real time access anywhere, anytime with the internet and a browser
- Customized: Unit / Site Specific
- Helps to maximize yields by applying the knowledge of the unit designers
- Helps to improve reliability by incorporating the knowledge and maintenance procedures of the different process equipment

Efficient training tool to improve on-boarding of new hires and up-skill existing workers in DCU safety and operations