

Alternatives to Rare Earth – Commercial Evaluation of REpLaCeR[®] FCC Catalysts at Montana Refining Company

Presented by: Ann Benoit , FCC Technical Service Rep. , W.R. Grace & Co. Ann.Benoit@grace.com

Ron Colwell - Engineering Manager, Montana Refining Company, Doug Jergenson – Operations Manager, Montana Refining Company Sudhakar Jale – FCC Marketing Manager, W.R. Grace & Co. Emery Udvari – National Technical Sales Manager, W.R. Grace & Co. David Hunt – FCC Technical Manager, W.R. Grace & Co.

Rare Earth Prices Increased Sharply in 2011

MRC

REplate R Over 50 Commercial Applications

% RE Reduction	Ni plus V, ppm	V plus Na, ppm
100	56	2,700
100	250	3,500
100	2373	5,276
100	4743	5,466
80	1798	4,714
80	8263	9,478
30	8229	7,759
20	11195	5,810
	% RE Reduction 100 100 100 100 80 80 30 20	% RE Reduction Ni plus V, ppm 100 56 100 250 100 2373 100 4743 80 1798 80 8263 30 8229 20 11195

- Low metals VGO to High Metals Resid Applications •
- Rare Earth Reduction 100% to 20%

	Lanthanum	Cerium	
REp	La "	Ce ⁵⁸	R
	Annese Weight - 128.81	Adamin Margiri = 148,12	

MRC

Family of RE-Free Catalysts

	RE Free C	atalysts			
Z ²² Technology Z ²² Technology	 Z-22 zeolite in REACTOR[™] is Stabilized with a Proprietary Element REACTOR[™] matches Activity and Selectivity of Equivalent RE containing Alumina Sol Formulations Full scale Production Commenced in 2Q'11 40 Commercial Applications and Growing 				
Z-21 Technology BEBET	 REBEL is Formulated with Proprietary Grace Alumina and Z-21 Zeolite The Activity and Selectivity of REBEL[™] is similar to RE containing High Matrix MIDAS[®] Catalyst Commercial Production commenced early 2Q'11 Z-21 Technology is in 25 Commercial Applications 				
	Low RE Cataly REMEDY [™] Low RE Technology for VGO/HT feeds	st Systems REDUCE	R™ _{ology}		
MORTANA EEFITING COMPARY					5
Alternate Zeol	ite Stabilization	Technolo	ogy Z-21 a	and Z-22	5
Alternate Zeol Stabilization w	ite Stabilization	Technolo Proprieta	Dgy Z-21 a	and Z-22 RE Stabilization	5
Atternate Zeos Stabilization v Rare Earth impact on Z Prevents De-Alumin Stabilizes the structur Rare Earth controls Ze Activity Selectivity Selectivity Prevents Metals Deact Very Effective Vana	ite Stabilization ith Rare Earth (RE) Ceolite ation Ire olite Unit cell size 24.32 Å Si/AI = 12 dium Trap 15 AI atoms/unit cell	Technold Proprieta • Alternate Me Grace's RE- - Proprieta - Unique N • Alternative m to RE contain - Similar U - Similar U - Truly RE very low	DGY Z-21 a ary Grace non-R ethods are used to S free Catalyst ary Stabilizing Comp Manufacturing Proce haterials provide acti ning catalysts JCS as RE containin free, without Stabili UCS and Activity	and Z-22 RE Stabilization Stabilize the Zeolites in pounds esses ivity and stability simila- ing Zeolites ization, would yield a	1 ar
Alternate Zeou Alternate Zeou Stabilization w Are Earth impact on Z Prevents De-Alumin Atabilizes the structu Rare Earth controls Ze Activity Selectivity Activity Prevents Metals Deact Very Effective Vana Rare Earth Enha and Increa	ite Stabilization ith Rare Earth (RE) feolite olite unit cell size 24.32A si/AI = 12 dium Trap 15 AI atoms/unit cell nces Activity of Zeolites ses Gasoline Yield	Technold Proprieta Alternate Me Grace's RE- Proprieta - Unique M Alternative m to RE contain - Similar U - Truly RE very low Z. Deacti	Dgy Z-21 a ary Grace non-R ethods are used to S free Catalyst ary Stabilizing Comp Manufacturing Proce materials provide acti ning catalysts JCS as RE containin free, without Stabili UCS and Activity -21 and Z-22 have Hig ivation than Zeolite w	and Z-22 RE Stabilization Stabilize the Zeolites in pounds esses ivity and stability similation ig Zeolites ization, would yield a	5

- 6

RE-Free Technology - Acidity After Metals-Free Deactivation

MRC – Refinery in Great Falls, MT

- Located on the Missouri River
- Crude Rate ~10k bpd
- Nelson Complexity Factor -9.3
- Sour Canadian and Local Crudes
- Products
 - Low Sulfur Gasoline
 - ULSD
 - JET
 - Asphalt

MRC

MRC Block Flow Diagram OCTANE HYDROTREATING IMPROVEMENT Naphtha LPG Hydrogen CRUDE . Hydrotreater DISTILLATION Isomerization Kero Gasoline Hydrotreater Crude Catalytic Reformer Tower Crude ULSD/GO Hydrotreater Alkylation t Jet, Diesel Vacuum UPGRADING Tower Gasoline LCC FCC Asphalt Slurry Oil MRC | 10

- 9

MRC's FCC Operation

- UOP Stacked Unit
- Feed Rate ~3000 bpd
- Hydrotreated VGO Feed Sulfur ~0.2 wt%
- Maximum LCO Mode Reactor Temperature ~940°F
- Full Combustion Regenerator Temperature ~1280°F
- Tertiary Particulate Control Device none
- SOx Controlled to 25 ppm with Super DESOX[®] OCI
- Gasoline Hydrotreater none
 - Rely on 30% Gasoline Sulfur Reduction via Grace SuRCA[®] Technology to maximize VGO/ULSD HDT Run length

Two FCC Catalyst Reformulations Were Made in 2011 at MRC

	GENESIS® GSR®	REMEDY™ 1 GSR®	REMEDY™ 2 GSR®
Reformulation		January 2011	August 2011
Activity, Wt.%	80	80	80
RE ₂ O _{3,} Wt.%	1.50	1.00	Trace
Al ₂ O _{3,} Wt.%	51	51	47
Zeolite Surface Area, m ² /gm	200	200	220
Matrix Surface Area, m ² /gm	90	90	75
0 to 40µ, %	13	13	13
Gasoline Sulfur Reduction	30%	30%	30%

 Each REMEDY[™] Formulation Was Designed for Similar Yields and Catalyst Additions, but Lower Rare Earth

REMEDY[™] 2 GSR[®] Eliminated the Rare Earth Surcharge

11

Final Remarks

MRC

- Rare Earth Free REMEDY[™] was a Success at MRC
 - Similar Conversion Levels at the Same Catalyst Addition Rate
 - Low Dry Gas and Slurry Yield
 - High Gasoline Selectivity at Similar Octane
 - Coke Selectivity Was Maintained
 - Gasoline Sulfur Reduction Maintained
 - No Increase in Flue Gas Opacity

