A Fresh Look at 3 Drum Cokers

Coking Safety & Reliability Seminar
Moody Gardens
Galveston, TX
May 1 - 4, 2012

Presented by:
Kenneth Kirkpatrick (Kenneth.Kirkpatrick@Fluor.com)
Barry Millet (Barry.Millet@Fluor.com)

Co Authors:
George Miller (George.Miller@Fluor.com)
Les Antalffy (Les.P.Antalffy@Fluor.com)
Paul McDade (Paul.McDade@Fluor.com)

Outline

- Introduction
 - Common terms & historical trends
- Design Advantages for Adding A 3rd Coke Drum
 - 1. Cycle Advantages
 - 2. Operation Advantages
 - 3. Fatigue Advantage
- Economical Advantages for Adding A 3rd Coke Drum
 - New Coker unit
 - Existing Coker unit
- Summary & Conclusions
Why do Coke Drums fail?

Severe Cyclic Thermal Conditions due to
- Minimal Preheat Temperature
- Aggressive Heat Up Rate
- Aggressive Quench Rate
What do we do to Stop Failures?

◆ Modify Operations
 – Increase preheat temp
 – Control cool down
 – Increase cycle time

◆ Improve Equipment
 – Innovation with new geometry and designs
 – Better materials
 – Manufacturing controls
 – Modify inlet flow conditions

◆ Most efforts are focused on trying to improve equipment because when the operations are modified we slow down the process, lose throughput and profits!

Why Install A 3rd Drum?

◆ Higher than expected maintenance costs
◆ Need shorter drum cycles or more throughput
◆ Severe thermal cycles with a 2 drum unit – Reduce thermal impact
◆ Difficulty producing a design for the full design life
◆ Lower cost and improved reliability
Historical Data & Trends

- Historically – The heat up rates controlled fatigue design
 - Heat up rates have not changed significantly
- Recent Trend – Shorter coke drum cycles
 - Less preheat
 - More aggressive quench

Historical Data & Trends

- Cyclic stresses are produced from large temperature differences between adjacent components
Historical Data & Trends

- Historical Data – Quench Rate

First Advantage
Drum Cycle
2 Drum Coker Cycle Advantage

3 Drum Coker Cycle Advantage

Reduced Number of Cycles per Drum
3 Drum Coker Cycle Advantage

- 2 Drum System
 - 30 Year Life
 - ~15 hr Cycle
 - 9,000 Cycles Per Drum
 - 18,000 Cycles Per Unit
 (9,000 * 2 Drums)

- 3 Drum System
 - 30 Year Life
 - ~15 hr Cycle
 - 18,000 Total Unit Cycles
 - 6,000 Cycles Per Drum
 (18,000 / 3 Drums)

- 1.5 X Life Advantage for 3 Drums (9,000 / 6,000)
 - Each drum experiences 1/3 less cycles over a 30 year period
3 Drum Coker
Cycle Advantage – Example

шение of Coker

- Repairs are Performed After 10 Years

- Identical operating conditions as 2 drum coker
- Would not expect to perform the same repairs until after 15 years (10 * 1.5) due to the reduced number of cycles per drum

Second Advantage
Operations
With a 3 drum coker there is twice the amount of time between coking to perform the following:
- Quench, Dehead, Cut, Rehead, Steam Test & Preheat

Possible to block in 1 drum for a short period of time to perform:
- Routine maintenance
- Drum inspection and repair
- Deheading replacement and repair
- Severely damaged drum – possible to operate on 2 drums until next turn around
Third Advantage

Fatigue

3 Drum Coker
Fatigue Advantage – Example 1

Alternating Stress = 0.5*Stress Range
No Stress Reversals

Alternating Stress = 0.5*Stress Range
Full Stress Reversals
3 Drum Coker
Fatigue Advantage – Example 1

+ 60,000 psi
- 0 psi
Range = 60,000 psi
Sa = 30,000 psi
Cycles = ?

+ 60,000 psi
- 60,000 psi
Range = 120,000 psi
Sa = 60,000 psi
Cycles = ?

3 Drum Coker
Fatigue Advantage – Example 1

- ASME Section VIII Division II Carbon, Low-Alloy Steel
SN Fatigue Curve
3 Drum Coker Fatigue Advantage – Example 1

+ 60,000 psi Range = 60,000 psi
- 0 psi Sa = 30,000 psi
Cycles = 23,500

+ 60,000 psi Range = 120,000 psi
- 60,000 psi Sa = 60,000 psi
Cycles = 2,500

Fluor

3 Drum Coker Fatigue Advantage – Example 1

- Exaggerated Skirt Displacements (10X)

Coking Heat-up
Quench Cool-down
3 Drum Coker
Fatigue Advantage – Preheat and Quench

2 Drum Coker
15 hr Coke Fill Cycle
15 hr Window

3 Drum Coker
15 hr Coke Fill Cycle
30 hr Window

Preheat Temperature
Quench Rate

FLUOR®

3 Drum Coker
Fatigue Advantage – Example 2

9 Cases are evaluated using the typical skirt to shell juncture

FLUOR®
Increasing the preheat has a small effect on the stress range since most stress in this region is due to coke being introduced into the vessel.

Reducing the quench rate has a large effect on the stress range since the reversal is directly affected.

Stress Range = Heatup Stress - Quench Stress

N1 = Number of Cycles for Initial Quench Rate
N2 = Number of Cycles for Target Quench Rate
Cycle Ratio = N2 / N1
Total Est Life Extension = 1.5 \cdot \text{Cycle Ratio}

<table>
<thead>
<tr>
<th>Existing Rate</th>
<th>Target Rate</th>
<th>Cycles</th>
<th>Cycle Ratio</th>
<th>Drum Factor</th>
<th>Total Est Life Extension</th>
<th>Existing Life (yr)</th>
<th>Est Life (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6</td>
<td>11416</td>
<td>1.46</td>
<td>1.5</td>
<td>2.19</td>
<td>10.0</td>
<td>21.85</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>5271</td>
<td>3.16</td>
<td>1.5</td>
<td>4.73</td>
<td>10.0</td>
<td>47.33</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>3821</td>
<td>4.35</td>
<td>1.5</td>
<td>6.53</td>
<td>10.0</td>
<td>65.29</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>2969</td>
<td>5.82</td>
<td>1.5</td>
<td>8.73</td>
<td>10.0</td>
<td>87.26</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>2196</td>
<td>7.58</td>
<td>1.5</td>
<td>11.36</td>
<td>10.0</td>
<td>113.63</td>
</tr>
</tbody>
</table>
Economical Advantages for Adding a 3rd Coke Drum
3 Drum Coker Economics Advantages – Assumptions

- No Escalation
- No Inflation
- Production Losses - $10 Million
- Estimated Maintenance Costs - $28 Million / Life of Drums

3 Drum Coker Economics Advantages – Assumptions

New Coker

- Entire 2 Drum Coker Unit $1.38 billion
 - Upstream Process Units, Coke Drum Area, Coke Pit, Coke Handling and Conveying System & Downstream Process Units
 - Coke Drum Structure Portion $180 million
 ▲ Drums, Foundations, Bottom Unheading Device (BUD), Top Unheading Device (TUD), Drill Derricks, Jet Pumps & Piping

- Additional 3rd Drum $80 million
 - Drum, Foundation, BUD, TUD, Drill Derricks & Piping
3 Drum Coker Economics Advantages – Assumptions

Existing Coker

- **2 Drum Coker Replacement** $70 million
 - News Drums, Remove Derricks, Remove Drums, Remove Associated Piping, Remove TUD, Remove BUD, Replace Drums, Replace Derricks, Replace Associated Piping, Replace TUD & Replace BUD

- **Additional 3rd Drum** $90 million
 - Drum, Foundation (pre-T/A), BUD, TUD, Derrick, Piping & Tie-Ins During T/A

3 Drum Coker Economics Advantages – Assumptions

- **Typical Coke Drum Maintenance Cost**
3 Drum Coker Economics Advantages

- New Installation

- Existing Installation
3 Drum Coker
Economics Advantages – Summary

- **Initial Investment VS. Long Term Savings**

<table>
<thead>
<tr>
<th>Modification to Existing Unit</th>
<th>New Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Investment</td>
<td>-$90MM</td>
</tr>
<tr>
<td>Long term savings 1 Drum Replacement</td>
<td>+18MM</td>
</tr>
<tr>
<td>Long term savings 2 Drum Replacement</td>
<td>+$127MM</td>
</tr>
</tbody>
</table>

- **Once all factors are considered both cases can be shown to provide long term savings**

3 Drum Coker
Summary & Conclusions

- **3 Drum Coker Advantages**
 - Reduce the need to spend additional money on improved equipment designs
 - Ability to increase throughput without severely impacting the thermal cycle
 - More time between drum cycles for operations
 - Reduced maintenance costs and drum replacements
 - Ability to block in 1 drum for maintenance or repairs
 - Substantial fatigue live advantage by adding 1 drum to the cycle and reducing the thermal impact
 - Over the life of the unit the 3rd drum will pay for itself due to reduced maintenance costs and drum replacements
 - Improved reliability
A Fresh Look at 3 Drum Cokers

Coking Safety & Reliability Seminar
Moody Gardens
Galveston, TX
May 1 - 4, 2012

Presented by:
Kenneth Kirkpatrick (Kenneth.Kirkpatrick@Fluor.com)
Barry Millet (Barry.Millet@Fluor.com)

Co Authors:
George Miller (George.Miller@Fluor.com)
Les Antalffy (Les.P.Antalffy@Fluor.com)
Paul McDade (Paul.McDade@Fluor.com)