

Livia Sierra Llorens – lisl@topsoe.com

Agenda

- A few words about Haldor Topsoe
- Handling sulfurous streams
 - ✓ the traditional way
 - ✓ the WSA way
- Introduction to WSA technology
- WSA process and lay-outs
- References
- Summary

Haldor Topsoe Company

- Established in 1940 by Dr. Haldor Topsoe. Private 100% family owned company
- Global market leader in heterogeneous catalysis with a 75 year long track record
- ~2,700 employees in 11 countries across five continents.
- HQ in Lyngby, Denmark, HT Inc. located in Houston ~~250 employees

Services:

- Catalysts
- Technology/licensing
- Engineering
- Hardware
- Operation assistance

Synergies in the Topsoe business model

- Founded on the belief that applied fundamental research is key to build and retain a leading position in catalysis and technology supply
- Basic research and catalyst characterization done by 300+ world class scientists
- Approx. 10% of revenues annually applied to support R&D efforts
- Bringing science to the market
- Improving our products through costumer interaction

Refinery Overview

Topsoe WSA plant

What to do with H₂S?

The traditional way

Other uses

of sulfur

What to do with H₂S?

The direct way

H₂S

Sulfuric acid

Sulfuric acid plant (WSA)

Four times more energy

when producing sulfuric acid instead of sulfur

Limitations when producing sulfur in a Claus plant

- Minimum H₂S content in feed gas of 20 vol.-%
- Other combustibles than H₂S (like NH₃ and hydrocarbons) make air control more complex

- Ammonia requires very high furnace temperature
- Hydrocarbons give risk of carbon formation and catalyst deactivation
- COS and CS₂ require special design
- Sulfur solidifies below 120°C and gets viscous above 160°C.

Comparison WSA vs. Claus

Operating expenses (OPEX)

3 x more steam	
and better quality	/

Item	Unit price	Topsoe's WSA technology		Claus technology	
	USD	Production/day	USD/year	Production/day	USD/year
Sulfur, MT	80			100	2,640,000
Sulfuric acid, MT	40	306	4,040,000		
HP steam, MT	20	710	4,690,000		
MP steam, MT	12			225	891,000
Production revenues, USD/year			8,730,000		3,530,000
		Consumption/day	USD/year	Consumption/day	USD/year
Fuel gas, Nm³	0.28			6,100	563,000
Cooling water, m³	0.01	2,800	9,000		
Electric power, KWh	80.0	37,000	976,800	6,400	169,000
Waste water, MT	10			57	188,000
Production cost, USD/year			985,800		920,000
Net income, USD/year			7,740,000		2,600,000

Comparison WSA vs. Claus

Summary

- WSA offers larger revenues and less CAPEX
- WSA produces 3 times as much steam; this means saving in fuel consumption and CO₂ emissions
- WSA produces HP steam; Claus produces mostly MP steam
- WSA handles NH₃, COS and hydrocarbons
- DeNOx is conveniently included in the WSA process, when required
- Smaller plot area for WSA than for Claus
- Less equipment is required
- WSA is simple and easy to operate.

What is WSA - Wet gas Sulfuric Acid

A process for cleaning sulfur containing streams under production of concentrated sulfuric acid

Lean H₂S gas Rich H₂S gas SRU tail gas SWS gas SO_2 SO₃ Elemental sulfur CS₂ / COS Spent H₂SO₄

- ...No need to dry the gas
- ...No water consumption
- ...No need to use chemicals or other additives
- ...No generation of waste products
- ...With high energy efficiency.

WSA process lay-out

H₂S gas Reaction: $H_2SO_4(g) \rightarrow H_2SO_4(liq) + heat$ Superheated steam Cleaned gas Blower Combustion air SO₂ converter Blower **BFW** Steam Air drum Interbed cooler **WSA WHB** Interbed condenser H_2S gas cooler Combustor \ Gas cooler 11/ Reaction: Acid cooler $H_2S + 1\frac{1}{2}O_2 \rightarrow SO_2 + H_2O + heat$ Reaction: Reaction: **Product** acid

 $SO_3 + H_2O \rightarrow H_2SO_4(g) + heat$

 $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3 + heat$

WSA process lay-out

H₂S gas + SWS gas

WSA process lay-out

Spent acid regeneration

SO₂ conversion catalyst series VK-W

VK-WSX / VK-WL 9 mm Daisy

VK-WSA 25 mm Daisy

VK-WSA / VK-WH 12 mm Daisy

WSA condenser

WSA condenser - modular construction

WSA condenser design

WSA/SNOXTM references

March 2018

Refinery WSA plants

Irving Oil Limited, NB, Canada

Claus plant tail gas treatment 40 t/d sulfuric acid

OSC Slavneft (YaNOS) Yaroslavl, Russia

Spent acid regeneration 260 t/d sulfuric acid

Too good to be true??

Conclusions

- Attractive OPEX and CAPEX
- Simple process and easy to operate
- Proven and reliable technology (155+ references)
- Low emissions and no waste materials
- No issues with NH₃ and hydrocarbons.

