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OVERVIEW

• Vibrations Basics

• Drum Dynamics

• What is Affected

• Potential Consequences

• Case study
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VIBRATIONS BASICS

� Response of a flexible structure to excitation 

(fluid flow, pressure pulsations, sloshing, etc..)

� Components

• Mass (inertia)

• Spring stiffness (Force–Displacement)

• Dashpot viscous damping (Force–Velocity)

� Basic characteristics:

• Natural frequency (or frequencies) 

• Mode shapes

� Input – output

• Force

• Displacement
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DRUM DYNAMICS
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WHAT IS AFFECTED

� Pipes and pipe supports

� Base-plate bolts and grout

� Non-structural (stairs, lights, guardrails,..)

� Machinery (elevator, pumps, ..)

� Superstructure (concrete and steel)

� Foundation system (substructure and soil)

� Humans!
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POTENTIAL CONSEQUENCES

• Operator discomfort or fatigue 

• Poor performance

• Acceleration of corrosion damage

• Interruption of operations during repairs

• Fatigue cracks (leaks/ fires)

• Bodily injuries
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WHAT TO DO?

• Measure
• Vibrations

• Strain

• Process variables

• Analyze
• Stress / fatigue

• Human tolerance 

• Mitigate
• Process

• Structure
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CASE STUDY - 1

• Two-drum unit

• “Significant” vibrations in structure

• Conflicting views on 
� When they vibrate the most

� Which one vibrates more

• Failures
� Piping supports

� Anchor bolts

� Base plate grout

• Is the unit safe?

• Can the process be optimized to 

minimize vibrations?
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DRUM DESIGN AND OPERATION
1996 API Coke Drum Survey, 2003

• 16 feet in diameter - relatively small for the mid 

80’s 

• 76 feet in height - average to tall

• Slender drums

• Very common 1 ¼ Cr -1/2Mo material

• 17 hour fill cycle - average to relatively slow 

operation
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OBJECTIVES

• Monitor vibrations in the drums, piping, and 

structure.

• Obtain synchronized temperature and strain 

measurements. 

• Determine the timing and characteristics of 

maximum vibrations.

• Determine severity of dynamic stresses and 

potential for fatigue damage in the structure.

• Conduct sensitivity analysis of vibrations versus 

process variables. 
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PROCEDURE

• Installed 33 sensors and two data acquisition 

systems on the drums, piping, and structure.

• Monitored the unit for a period of 20 days (14 

cycles) 

• Processed and analyzed the data in time and 

frequency domain.

• Analyzed the correlation between key process 

variables with vibration, strain, and temperature 

measurements.
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INSTRUMENTATION

Vibration data acquisition system 

16 channel unit

16 seismic accelerometers @ 102 samples per second

2 strain gages (low-speed DC channels)

Temperature data acquisition system 

StrainDAQ unit

16 thermocouples 

1 sample per two seconds

Data collection was continuous without interruption 

during the entire monitoring period.
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Sensor Layout
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Example Quench Transient

Quench

TEMPERATURE

ACCELERATION

TIME
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CYCLE 9 - DRUM B QUENCH
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ONLINE DRUM B

0

0.02

0.04

0.06

0.08

0.1

0.12

1 3 5 7 9 11 13
Cycle

V
ib

ra
ti

o
n

 i
n

 I
n

c
h

e
s
 R

M
S

0

50

100

150

200

250

M
a
x
im

u
m

 V
a

lu
e
s
 (

G
P

M
)

DRUM B PIPE

DRUM A PIPE

DRUM A

DRUM B

STRUCTURE

DRUM B ONLINE

Vibration Versus Flow Rate



17

Strain Gauge Data

Low dynamic strains
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CASE-1 SUMMARY

• Drum vibration magnitude was maximum during the 
quench part of the cycle in the East-West direction.

• The two drums vibrated in a comparable manner both 
from magnitude and frequency standpoints. 

• The maximum recorded peak displacements were 0.58, 
0.35, and 0.23 inches for the drums, the piping, and the 
structure, respectively. 

• Measured dynamic strains in the structure were below 
the fatigue-inducing levels

• The correlation between vibration levels and recorded 
process parameters was established
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CASE STUDY -2

• Four-drum unit.

• Blow-down line.

• Cracks and leaks.

• Angled-tee joint.

• Thermal cycles.

• 3D loads.

• Vibrations.

• Why?

• How to fix it?
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1. Instrumentation 
� Strain gages

� Thermocouples

2. Extraction of loading conditions

3. Finite element analysis

4. Fatigue Assessment

ACTION PLAN



21

Intrinsically Safe Instrumentation System

INSTRUMENTATION
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FIELD MONITORING
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TEMPERATURE MEASUREMENTS
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THERMAL GRADIENTS

Every forth cycle
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CLOSEUP



26

PAD THERMAL GRADIENTS
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Extracted load cases
Five thermal profiles during the coking cycle
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Thermal Load Case



29

Von Mises Stress in the pipe

outside inside
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Von Mises Stress inside the pad

outside inside
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Fatigue Assessment

• Maximum thermal stress range is 92 ksi.

• Alternate stress is 49.8 ksi.

• Correction for E at 4000F

• Fatigue life is 4,441 cycles.
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CASE-2 SUMMARY

• Vibrations and pressure are not the main problem.

• The failure is caused by severe thermal transients that 

generate 92 ksi stress range in the pipe at the location 

of cracks.

• Recommendations to minimize stresses and increase 

fatigue life:

• Redesigned integral fitting.

• Fatigue-resistant welds.
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Questions?

Mahmod Samman, Ph.D., P.E.

Stress Engineering Services, Inc.

281-955-2900

mms@stress.com


