The Different Types and Causes of Coke Drum Bulging

Mahmod Samman, Ph.D., P.E.
Houston Engineering Solutions, LLC
(+1) 832-512-0109
mms@hes.us.com
History of Shell Bulging

- Major problem for decades.
- Despite design improvements, still a problem - perhaps more severe today.

Courtesy of CB&I
Bulging Study Background

• Database of one hundred and eighty four laser scans from coke drums in North America, South America, Europe, and Asia:
 – Carbon steel, Carbon-½ Moly, and 1, 1¼, and 2 ¼ Chrome
 – Age: new to 48 years.
 – Diameter: 19.7 to 32 feet.
 – Tangent-to-tangent length: 50.5 to 102 feet.
 – Minimum shell thickness: 0.45 to 1.54 inches.
 – Maximum shell thickness: 0.84 to 1.89 inches.

• Laser scans originally used for assessing bulging severity using the Plastic Strain Index (PSI)™.
Bulging Types

• Uniform
 – Seam Bulging
 – Bottom Growth
 – Tapered Growth
 – Outage Growth
 – Mid-height Growth
 – Band Bulging
 – Helical Bulging
 – Accordion Bulging

• Local

Weil and Rapasky (1958)
The constrained balloon
Classical Seam Bulging
Bottom Growth

Radius (in)

800 700 600 500 400 300 200 100 0

Height (in)

Radius (in)

900 800 700 600 500 400 300 200 100 0

Height (in)

Radius (in)

900 800 700 600 500 400 300 200 100 0

Height (in)
Outage Growth
Mid-height Growth

[Graphs showing mid-height growth with radius and height on the axes.]
Band Bulging
Helical Bulging
Accordion Bulging
Local Bulges
Causes

• Fabrication / design:
 – Local PWHT
 – Material / section mismatch

• Operation:
 – Coke stiffness
 – Thermal Gradients:
 • Axial
 • Circumferential
 • Local
Recap

• Bulges are not all the same
• Examined large database of laser scans
• Introduced distinct types of bulges
• Examined underlying causes rooted in design, fabrication, and operation