BANTREL

Repairs on 40 Year Old Drums at Suncor

Coking.com Safety Seminar

Safety Seminar September 17-20, 2007 Calgary, Alberta

MATERIAL SELECTION ISSUES IN COKER UNITS

Coking.com Safety Seminar, Calgary, Alberta

> September 17-20th, 2007 By Lutz Josefiak and Wes Witmer

Agenda

- Format
- · Some Issues Found in Coker Units
 - Corrosion
 - Cracking
 - Clad Restoration
 - Welding
 - Erosion
- Application oriented and state-of-the-art hardfacing
- Summary

What can Owner / Operators expect?

- · Bring in cutting edge technology
 - Apply Client specific lessons learned & material performance data
 - Update projects with revisions of industry standards
 - Participate in committee work
 - Attend conferences and seminars
- Material Selection Diagrams (MSD's)
 - Incorporate lessons learned, Client experience & latest industry standards
 - Include special fabrication, heat treating, cladding and hardness control notes

Corrosion Issues in Coker Units

- Furnace Tubes
 - Typically 9Cr-1Mo
 - Some tubes have only 5 to 6 years life. Why?
 - Consider Alloy 800HT and Alloy 825

Corrosion Issues in Coker Units

- Thermowells Coker Heater Line to Coke Drum & Coke Drum Overhead
 - Line Class typically 9Cr-1Mo
 - Minimum vendor standard is 316SS
 - 316SS will sensitize and could become susceptible to PTASCC
 - Consider Inconel 625 or Hastelloy C-276
 - Cheap insurance.
 - Recent example \$300 for SS; \$1500 for C-276

Corrosion Issues in Coker Units

- · PSV's Coke Drum Overhead
 - Line Class typically 9Cr-1Mo
 - Minimum vendor standard is 316SS nozzle and disc
 - 316SS will sensitize and could become susceptible to PTASCC
 - Consider Inconel 625 or Hastelloy C-276 for all components (body/bonnet/nozzle/disc)
 - Some Clients have experienced PTASCC on PSV's

Corrosion Issues in Coker Units

- Fractionator Trays, Top Head and line to OVHD Coolers
 - Ammonium Chlorides
 - Water soluble
 - · High risk of deposition
 - · Severe loss of tray capacity and efficiency
 - · Highly corrosive
 - Consider Inconel 625
 - Some Clients opt for carbon steel with increased inspection

Top & Trays

- Fractionator Overhead Coolers
 - Ammonium Chlorides
 - Ammonium Bisulfides
 - Consider Inconel 625
 - Some Clients opt for carbon steel with increased inspection

Corrosion Issues in Coker Units

- · Heater inlet lines
 - Typically 317SS
 - Some Clients have had good experience with 316SS even where high levels of naphthenic acids are present.
- Heater Charge Pumps
 - Typically 317SS
 - Can experience high erosion due to coke fines
 - Consider hardfacing of all wetted surfaces
- Heater inlet valves
 - Typically 317SS
 - Can experience high erosion due to coke fines
 - Consider hardfacing of all wetted surfaces

Clad Restoration Problems in Coker Units

- Preferential corrosion at weld joints between cladded sections
 - Dilution from base metal can result in lower than acceptable chemistries.
 - Grind caps of base metal welds for best chemistries

Welding Problems in Coker Units

- Cracking of 309 stainless steel weld metal due to differential coefficients of thermal expansion
 - Use nickel alloy filler metals
- Weld repairs of coke drums

Erosion Problems in Coker Units

Valves Downstream of Charge Pumps

Erosion Problems in Coker Units

Valves Downstream of Charge Pumps

Erosion Problems in Coker Units

- Furnace Tubes, Outlet Piping and Fractionator Bottoms Piping
 - Sand and coke particles
 - Long radius elbows
 - Restricted velocities
 - Locate thermowells on the downstream side of returns?
- Charge Pumps
 - 18Cr-8Ni SS versus 13Cr-4Ni SS
 - HVOF spray coatings

Summary

- Highlighted what Owners / Operators can expect from Engineering Companies
- Corrosion, cracking and welding issues within coker units were discussed
- Alternate materials of construction were presented

Application-specific materials testing

High pressure water jet pump for coke cutting

- DLC versus HVOF WC/CoCr and WC/267
- slurry jet erosion test with neutral pH slurries, metallurgical

Ball valve in "severe" service (Coker Furnace Charge Line)

- hot bitumen and bitumen hydrogen mixes
 T: 300 450 °C, P: up to 15 MPa
 ppH₂: up to 12MPa, ppH₂S up to 1.1Mpa
 S: 2-5%, Solids: ≈ 2000ppmw, Coke deposits
- DLC, HVOF WC/CoCr and WC/267, Laser clad stellites, spray and fuse Co based SFA
- high temp. and pressure sulphidation test in autoclave
- pin-on-disc, thermal shock, 3-point-beam, metallurgical