

State of Refining

- ▶ Refinery infrastructure is aging
- ▶ Refineries operating at as high as 99.4%
- Overuse increases the potential for failure
- Recent failures are understandable given the aging infrastructure and overuse

Paraphrased from - Larry Chorn, PhD, Chief Economist, Platts Analytics (Dec. 2006)

Rapid/Global Change

▶ Refiners around the world have been redefining entire heater reliability programs around ongoing monitoring programs and "New Inspection Technologies" for fired heater – FTIS™ & LOTIS®. These programs coupled with engineering assessment (RLA and FFS) allow refiners to manage risk of operations. Nowhere in the refinery is this more important than in the Coker Unit.

Ongoing Heater Monitoring Program

- 1. Identify Key Reliability/Safety Parameters
- 2. Reliability Measurement Tools
- 3. Routine Monitoring Program
- 4. Detect Potential Failures

Key Reliability Parameters

- 1. Tube Metal Temperature
- 2. Process Fluid Temperature
- 3. Heat Flux Rate
- 4. Excess Oxygen
- 5. Fuel Gas Pressure
- 6. Process Feed Characteristics
- 7. Process Charge Rate
- 8. Flue Gas Temperature
- 9. Draft
- 10. Environmental Emissions
- 11. Process Fluid Pressure
- 12. Structural Component Temperature

Why is Temperature Important? Controls availability Determines reliability Allows an assessment of risk

Routine IR/Heater Monitoring Program

- ▶ Determine who will perform monitoring (Internal Resources/External Resources/Shared)
- ▶ Establish heater baseline performance
- ▶ Determine monitoring frequency per heater:
 - · weekly, monthly, quarterly, as needed
- Data collection and analysis
- Determine action plan forward

Inspection Technologies Defined

- ► FTIS™ (<u>Furnace Tube Inspection System</u>)
 - Untethered intelligent pig utilizing Ultrasonics (UT) to rapidly inspect both the radiant & convection section as well as other piping configurations.
- ▶ LOTIS® (Laser Optic Tube Inspection System)
 - Laser based system designed to internally inspect tubes of many services (Boilers, Steam Reformers, Heaters, etc.)

Applications

- Furnaces Piping / Tubing
 - Numerous Furnace Types (Coker, Vacuum, Crude, UOP Platforming Heaters (CCR), Can, Cabin, etc.)
 - Various Coil Configurations (Vertical, Horizontal, U-Shape, etc.)
 - Changing Diameter Coils (4" ◊ 5" ◊ 6" ◊ 8")
 - Non-piggable furnaces in some cases (i.e. Common Headers) (Common Header Delivery Systems*)
- **Pipelines**
 - · Underground / Buried / Road Crossings
 - Insulated (i.e. Asbestos)
 - · Overhead (i.e. Congested Pipe Racks)
 - · In Plant / Between Plants / Wharf Lines

*Common Header Delivery System only available in Europe at this time QUESTTRUTEC: QUEST

FTIS™ Detectable Failure Mechanisms

- Pipe/Tube Wall Loss
 - · Corrosion (Int. or Ext.)
 - Erosion (Int. or Ext.)
 - (Int. or Ext.) Pitting
 - Mechanical Damage (Int. or Ext.)
- Deformation
 - Bulging (i.e. Flame Impingement)
 - · Swelling (i.e. Creep Strain)
 - Denting
 - Ovality

FTIS™ Current Limitations

- Current Design can handle minimum ID of 3.862" (6th Generation will reduce this minimum)
- Requires use of couplet (water) to push FTIS™ through piping coil and couple ultrasonic transducers.
- ▶ For Mule Ear (Plugged) Headers, the use of LOTIS® technology is recommended.

LOTIS® Detectable Failure Mechanisms

- ▶ Internal Pipe/Tube Wall Loss
 - Corrosion
 - Erosion
 - Pitting
 - Mechanical Damage

Deformation

- Bulging (i.e. Flame Impingement)
- Swelling (i.e. Creep Strain)
- · Denting
- Ovality

LifeQuest™ Heater Overview

- Clients demanded the ability to use FTIS™ and LOTIS® data to make decisions concerning safe and reliable operations.
- What clients asked for:
 - · Remaining Life Assessment within 24 hours
 - · Utilization historical data
 - · Compare data sets
 - · Assess risk versus time to help with turn-around planning
 - · In-house control over the process

Case Study #2

VACUUM HEATER

- Number of Coils / Passes = 8
- ▶ Pipe Material = 5Cr (5", 6" & 8" x Sch-80)
- Plant had modified heater convection section
- During mechanical pig cleaning process water was observed coming from Convection Section
- ▶ Plant elected to have FTIS™ Intelligent Pig inspection carried out rather than start cutting off return bends to find damage
- ▶ A FTIS™ Inspection was carried out on all 8 coils/passes (Inspection encompassed "both" Radiant and Convection sections)
- ► FTIS™ Intelligent Pig revealed only 8 pipe sections were damaged and localized to one end. All damage was "external"
- ▶ Plant stated that FTIS™ saved them over \$1M in coil replacement cost

Case Study #3

ATMOSPHERIC HEATER

- Number of Coils / Passes = 4
- Pipe Material = 347Stainless (4", 5" & 6" x Sch-40/80)
- ▶ Plant expected some damage, however, not severe
- ► FTIS™ Inspection revealed substantial damage in both Radiant and Convection section of the coil
- Plant cut out sections to confirm data. When the results matched perfectly they then elected to expand scope of work and inspect a total of three (3) heaters
- ► FTIS™ Data clearly showed two types of damage patterns
- ▶ Plant cut out all damaged areas above threshold and confirmed accuracy of FTIS™. FTIS™ data matched destructive testing perfectly.
- ▶ Plant is now using FTIS™ data to better understand why damage is occurring

Case Study #3:	Destructive Test Results
INSPECTIO	PIPING COIL ON RESULTS CONFIRMATION
1.) PIPE # 11 - 150"-200"AREA	FTIS™ REPORT 0.095- INCH MANUAL UT 0.095- INCH DRILLED HOLE w/CALIPER - 0.098- INCH
PIPE# 11- 400"- 450" AREA	FTIS™ REPORT 0.095- INCH MANUAL UT 0.110- INCH DRILLED HOLE w/CALIPER 0.098- INCH
2.) PIPE # 28- 400" AREA	FTIS™ REPORT 0.247- INCH DRILLED HOLE w/CALIPER 0.248- INCH
3.) PIPE # 29 - 200" AREA	FTIS™ REPORT 0.185- INCH DRILLED HOLE w/CALIPER - 0.188- INCH
 Thickness checks were initially p Manual UT thickness were taken Samples were cut out / hole drille very close to the same. 	
 The areas showing localized thin entire pipe length, with scattered 	ning in the FTIS™ report have erosion areas throughout deeper pitting.

Case Study #4

VACUUM FURNACE

- Number of Coils / Passes = 2
- ▶ Pipe Material = ASTM A335 P5 (6-inch x Sch.40)
- ▶ Heater Vintage = 1976
- ► FTIS™ was applied to inspect both process coils.
- ► FTIS™ inspection results detected extensive "external" corrosion damage in the radiant.
- Visual inspection found tightly adhered scale on piping exterior surface.
- ▶ FTIS™ results were not impacted by tightly adhered scale
- Large broad areas with 56% "external" wall loss was noted.
- ▶ Plant engineers utilized FTIS™ test results to make decision for replacement of several pipe sections

Summary

▶ Aging infrastructures, PSM concerns, and capacity requirements are driving refiners globally to re-examine and redefine their entire inspection and reliability programs for Fired Heaters.

